arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Sensors See All Vibration Testing Equipment See All リソースセンター See All アプリケーション See All 各産業 See All インサイト See All サービス See All サポート See All 当社の事業 See All 私たちの歴史 See All サステナビリティ(持続可能性) See All グローバルな事業展開
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Wireless DAQ Systems See All Pinnae See All Accessories See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Inertial Sensor Software See All Acoustic See All Current / voltage See All Displacement See All Force See All Inertial Sensors See All Load Cells See All Pressure See All Strain See All Torque See All Vibration See All Exciters See All Smart Sensors IO-Link See All Shaker Systems See All Power Amplifiers See All Vibration Controllers See All 音響 See All 設備とプロセスの監視 See All カスタムセンサ See All データの取得と分析 See All 耐久性および疲労 See All Electric Power Testing(電力テスト) See All NVH See All 信頼性 See All スマートセンサ See All 振動 See All 計量 See All 自動車および地上輸送 See All 校正 See All インストール、メンテナンス、修理 See All サポート :ブリュエル・ケアー製品 See All Release Notes See All コンプライアンス (Compliance) See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories See All Hand-held Software See All Accessories See All Wireless Gateways See All Wireless Nodes See All BK Connect Pulse See All API See All Microphone sets See All Cartridges See All Special Microphones See All Acoustic Calibrators See All Microphone Pre-amplifiers See All Sound Sources See All Acoustic Transducer Accessories See All Accessories See All Digital load cells See All Accessories See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Rotary Torque Sensors See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Accessories See All Power amplifier See All Accessories for exciters See All 電気音響 See All 音源探査(Noise source identification, NSI) See All 環境騒音 See All 音響パワーと音圧 See All 騒音認証 See All 産業用プロセスコントロール See All 構造ヘルスモニタリング See All 電気デバイス試験 See All 電気システム試験 See All グリッド試験 See All 高電圧試験 See All 導電加振機による振動試験 See All 構造力学 See All 機械分析と診断 See All プロセス計量 See All 車両の電動化 See All トランスデューサの校正サービス See All ハンドヘルド測定器の校正サービス See All 機器およびDAQの校正サービス See All 現地での校正 See All リソース See All ソフトウェアライセンス管理

Let’s Begin: The New Ear Simulator

The world of communication and entertainment is evolving and consumer expectations for audio quality continue to increase. We knew that the ear simulator of Type 4128 with its cylindrical ear canal did not allow realistic mounting of in-ear devices. Neither was the legendary IEC 711 coupler designed to perform acoustic measurement over the full audio range, 20 Hz to 20 kHz.

Therefore, we decided to build a new ear simulator – starting with a human-like pinna and ear canal as well as a unique eardrum simulator that matches the impedance of an average human ear over the full audio range.

HATS ear simulator

Designing An Anatomically Correct Ear

We collected the geometries of a large population of human ears using MRI scanner technology. The full ear canal geometry including the bony part adjoining the eardrum was captured. By post-processing all the data, we were able to determine an average human ear canal geometry.

The new ear has an anatomically correct ear canal with an angled eardrum simulator positioned exactly at the location of the eardrum to closely match the human ear. A new design of the pinna interior structure was used to create a more robust ear capable of withstanding more wear and tear. The transition between the soft part (the silicone ear) and the hard material (the end of the ear canal where you attach the eardrum simulator) was designed to retain the transition from the soft to the bony part of the human ear canal.

We also added a soft silicone band all around the ear for better sealing of over-the-ear headphones. A new click-on system, with a quick release of the ear simulator, allows for easy ear switching if needed. Finally, we designed a new mechanism to quickly attach and detach the new eardrum simulator from the ear, enabling the use of custom outer ear and ear canal geometry.

 

HATS ear

New Eardrum Simulator

While measuring the human ear canal anatomy, we also measured the corresponding full-range acoustic impedance for every single ear and were able to determine an average human acoustic impedance.

To achieve optimal accuracy of the eardrum simulator response up to 20 kHz (remember that the wavelength of a 20 kHz sound wave is shorter than 2 cm) we had to use an unprecedented level of precision in the design and during the manufacturing processes.

Our aim was to have an artificial eardrum that is closer to the human eardrum in size. To accommodate this, we developed a new pre-polarized ¼-inch microphone with a unique, flat pressure response and a new low-noise preamplifier. The result? A new eardrum simulator has been born, matching the frequency response and acoustic impedance targets.

HATS eardrum simulator

Redesigned Mouth Simulator

The mouth simulator has also been redesigned. Using a custom-designed loudspeaker element with optimized geometry and a stronger magnet system, we optimized the volume of the loudspeaker cabinet.

This resulted in a full-range mouth simulator (with an extended response in both the low- and high-frequency range). This not only allows the mouth to be louder it also improved high-frequency roll-off. The new mouth also has a built-in amplifier, simplifying measurement setups and lowering system cost.

HATS mouth simulator

High-frequency HATS Type 5128

HATS Type 5128 was designed with a connector side panel that includes power and signal input for the mouth, and two CCLD microphone connectors (CCLD microphones allow for inexpensive BNC cables, acquisition front end, and conditioning system). You do not have to go fishing for cables anymore, everything is clearly labelled and easy to reach.

 

HATS Type 5128

So, do I really need Type 5128 HATS?

Type 5128 is designed to be used when high-frequency content is of importance.

This could be testing the audio performance of smart devices, hands-free, headphones, or hearing aids. Type 5128 loads the devices under test with the exact same impedance as an average human ear. This means that it measures the audio quality of a device in the same way as a human would perceive the quality.

The ability to measure in the full audio band (20 Hz to 20 kHz) is a huge step in audio performance evaluation, which potentially could facilitate the retirement of the venerable IEC 711 coupler.

Evolution of hearing simulation

Part 1

Part 2

More articles by Dr Rémi Guastavino

Dr Remi Guastavino

Article 1
What to expect when using lower quality measurement microphones

Article 2
What are the implications of using lower-quality measurement microphones

Article 3
Setting the bar for microphone excellence

Article 4
Measurement Microphones Explained

Article 5
High-frequency HATS, why?

Related Products

Recommended for You