arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Sensors See All Vibration Testing Equipment See All リソースセンター See All アプリケーション See All 各産業 See All インサイト See All サービス See All サポート See All 当社の事業 See All 私たちの歴史 See All サステナビリティ(持続可能性) See All グローバルな事業展開
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Transmission Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Wireless DAQ Systems See All Pinnae See All Accessories See All DAQ See All Drivers API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Inertial Sensor Software See All Acoustic See All Current / voltage See All Displacement See All Force See All Inertial Sensors See All Load Cells See All Pressure See All Strain See All Torque See All Vibration See All Exciters See All Smart Sensors IO-Link See All Shaker Systems See All Power Amplifiers See All Vibration Controllers See All 音響 See All 設備とプロセスの監視 See All カスタムセンサ See All データの取得と分析 See All 耐久性および疲労 See All Electric Power Testing(電力テスト) See All NVH See All 信頼性 See All スマートセンサ See All 振動 See All 計量 See All 自動車および地上輸送 See All 校正 See All インストール、メンテナンス、修理 See All サポート :ブリュエル・ケアー製品 See All Release Notes See All コンプライアンス (Compliance) See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Fusion-LN See All Accessories See All Hand-held Software See All Accessories See All Wireless Gateways See All Wireless Nodes See All BK Connect Pulse See All API See All Microphone sets See All Cartridges See All Special Microphones See All Acoustic Calibrators See All Microphone Pre-amplifiers See All Sound Sources See All Acoustic Transducer Accessories See All Accessories See All Digital load cells See All Accessories See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Rotary Torque Sensors See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Accessories See All Power amplifier See All Accessories for exciters See All 電気音響 See All 音源探査(Noise source identification, NSI) See All 環境騒音 See All 音響パワーと音圧 See All 騒音認証 See All 産業用プロセスコントロール See All 構造ヘルスモニタリング See All 電気デバイス試験 See All 電気システム試験 See All グリッド試験 See All 高電圧試験 See All 導電加振機による振動試験 See All 構造力学 See All 機械分析と診断 See All プロセス計量 See All 車両の電動化 See All トランスデューサの校正サービス See All ハンドヘルド測定器の校正サービス See All 機器およびDAQの校正サービス See All 現地での校正 See All リソース See All ソフトウェアライセンス管理

For reliable displacement measurements

HBK offers various displacement transducers, sensors and probes in a variety of designs and lengths. They use inductive measurement principle, strain gauge measuring bridges or fiber bragg gratings.

How Does an Inductive Displacement Sensor Work?

An inductive displacement sensor functions according to the principle of inductance. However, the following questions still need answering: What exactly is it? What is behind it? How is it technically implemented? What are its advantages?

 

Inductive working principle

Going back to the basis of the principle of action, it can be stated as follows:

A metallic core is moved in the vicinity of a coil through which alternating currents flow, thereby causing a change in the impedance and the alternating current resistance of the coil within this coil. This change can be measured and amplified with skillful wiring (see Wheatstone Bridge Circuit, explained briefly). Thus, a change in displacement can be represented in an electrical signal.

There are different approaches to the technical implementation. Most displacement transducers at HBK are designed as active quarter bridges or half bridges, which, then, are internally supplemented to form half or full bridges. Strictly speaking, this means that only one or two parts of the bridge circuit are coils, while the other parts are represented by resistors.

In order to optimize linearity and temperature behavior, special methods are employed to wind the coil and create the magnetic core.

 

Advantages of Inductive Displacement Measurement Technology

As there is no contact between core and coil due to the principle, the inductive measuring principle should be regarded as wear free. It is, of course, ideal for service life and maintenance costs. Depending on the version, only the linear guide touches the probe rod with a guide. However, the guide can be designed very well and can, hence, be used for many years without any problems.

Furthermore, a special feature of the inductive measuring principle is the quasi infinite resolution as, in contrast to other principles, it only has a coupling through a magnetic flux. The limitation lies in the technology of the amplifier used. However, with modern measurement technology and high-quality products, resolutions in the micrometer range can be achieved.

Moreover, a third and often significant advantage of this principle is the special quarter- or half-bridge design. In contrast to Linear Variable Differential Transformers (LVDT), HBK displacement transducers have fewer coils and, therefore, require less installation space.

 

Displacement Sensor Product Range from HBK

After the explaining the function and advantages of HBK, the question of how to implement them still remains. At HBK, the inductive displacement sensors can be divided into three series:

  • WA-L and WA-T: The "all-rounders"; versatile; with loose plunger(-L) or as probe (-T)
  • WI: price optimized; compact; probe
  • W1ELA/0: Installation variant consisting of coil former and plunger; no housing