arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Test Solutions See All DAQ Software See All Drivers & API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Power Amplifiers See All LDS Shaker Systems See All Vibration Controllers See All Accessories for Vibration Testing Equipment See All Training Courses See All Articles See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Accessories See All BK Connect / Pulse See All API See All Microphone Sets See All Microphone Cartridges See All Acoustic Calibrators See All Special Microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Introduction

knowledge, resource center, articles, sound active system

If you’re driving a Hyundai, you decide how the engine sounds – with a little help from Brüel & Kjær.

Since 2015, Hyundai Motor Company (HMC) has been offering a Personalized Engine Sound System (PESS) in special vehicle models to enable customers to create different engine sounds in the same vehicle.

“PESS is the first functionality in the world that fits individual customer needs, and it provides customers with a pleasant driving experience,” says Eun Soo Jo, Senior Research Engineer at HMC.


About Hyundai Motor Group

Founded in 1967, the multinational Hyundai Motor Group is headquartered in Seoul, South Korea, and is the fifth largest vehicle manufacturer in the world. Its brands include the Hyundai and Kia brands, the Genesis luxury brand and N, its new high-performance subsidiary brand. Hyundai has been working with Brüel & Kjær on various projects related to the NVH Simulator since 2008.


But until recently, the way Hyundai designed the Personalized Engine Sound System relied heavily on designing engine sounds in prototype vehicles driving on test tracks – a resource-intensive and sometimes unreliable process.

“The challenge was to make a tool that can genuinely interface to the different types of ASD controllers based on the driving conditions in the NVH simulator, since each ASD controller requires a set of different control signals to be used.”
Wookeun Song, PhD, research engineer, Brüel & Kjær

knowledge, resource center, articles, sound active system

Designing engine sound

For nearly a decade, many car manufacturers, including Hyundai, have used technology called Active Sound Design (ASD) to give an engine a preset target sound. An ASD controller generates the vehicle engine’s sound based on various engine parameters, such as rpm, throttle and torque input. The ASD tool operates within an audio amplifier connected to the vehicle (see sidebar ‘How Active Sound Design usually works’). ASD also plays a key role in the South Korean automobile giant’s Personalized Engine Sound System.

“ASD allowed Hyundai’s Personalized Engine Sound System to be implemented originally, but it required a lot of on-road tuning of the designed sounds,” explains Wookeun Song, PhD, Research Engineer and key member of Brüel & Kjær’s Innovation Lab. “Somebody needs to be driving the prototype car, andsomebody else needs to be changing the settings. It’s not just a one-step design process; you have to do it iteratively, which makes it very time-consuming.”

Everything from different weather conditions to different road conditions have to be taken into account when tuning designed sounds. The repeatability of measurements can suffer with on-road tuning in prototype vehicles, due to changing background noise and operating conditions. And, it’s not possible to conduct back-to-back comparisons between different ASD amplifiers or between different tunings.

What’s more, demand for the prototype vehicles is huge. “The ASD designer, the door designer, the person setting up the amplifier... everyone wants to get access to this vehicle,” says Wookeun.


How ASD usually works

The physical properties of a vehicle’s engine and body normally determine the way it sounds inside the cabin. But ASD uses the vehicle’s audio system to enable users to experience a manufacturer preset ‘target’ sound instead. A standard CAN bus unit collects real-time driving information from the vehicle, then sends that information to the ASD controller. Based on that input and the loudspeaker transfer function (that is, how a sound created at a specific point sounds inside the cabin by the loudspeakers), the controller composes a configured engine sound, which it sends through the loudspeakers.

From on road to in lab

In addition to using ASD in vehicle prototypes, Hyundai uses a desktop noise, vibration and harshness (NVH) simulator from Brüel & Kjær to ‘drive’ cars in development. The NVH Simulator, however, was not part of its initial process to develop the Personalized Engine Sound System.

The NVH Simulator enables the user to evaluate, modify and design vehicle operating sounds interactively by ‘driving’ through a virtual scenario shown on a desktop monitor. It uses driver controls (accelerator, gears, steering, brake) as inputs to a real-time sound model that accurately recreates the sound of a vehicle. And all the work takes place in a lab, rather than on the road.

Wouldn’t it be great if the active sound design process also could be done in a desktop simulator, reducing the amount of time spent using actual prototypes.

That’s what Hyundai thought, too.

knowledge, resource center, articles, sound active system

Optimizing the personalized sound design process

“We wanted to implement the functionalities that enable individual customers to optimize vehicle engine sound based on their preference using ASD technology,” says Dr Dong Chul Park, Research Fellow at Hyundai. “We thought that the technologies related to Brüel & Kjær’s NVH Simulator could enable us to develop various engine sound designs for our customers.”

“ We wanted to implement the functionalities that enable individual customers to optimize vehicle engine sound based on their preference using ASD technology.”
Dr Dong Chul Park, research fellow at HMC (Hyundai Motor Company)
knowledge, resource center, articles, sound active system

Once Hyundai explained the challenges they were experiencing, Brüel & Kjær created a plan to tackle them.

Chief among the hurdles was the fact that the NVH Simulator and the ASD controller that Hyundai was using at the time run in two different environments: the ASD controller is integrated with a vehicle’s audio system, and the NVH Simulator runs in a computer. What’s more, different ASD controllers from different suppliers have different parameters to be tuned, making a one-size-fits-all approach even more difficult.

knowledge, resource center, articles, sound active system

“The challenge was to make a tool that can genuinely interface to the different types of ASD controllers based on the driving conditions in the NVH Simulator, since each ASD controller requires a set of different control signals to be used,” says Wookeun.

Together, Hyundai and Brüel & Kjær defined the specific project goals: first, to develop computer software that can combine the output of the NVH Simulator and the ASD sounds in real time – providing data compatible with the ASD controller; second, to run subjective evaluations and objective analyses for Hyundai’s ASD settings – demonstrating a more optimized sound design process.


Keeping it personal

The Personalized Engine Sound System (PESS) concept, which Hyundai started offering in 2015, fits perfectly into the consumer trend of customizing purchases to reflect personal taste and preferences. While a typical ASD setup provides the customer with a target sound preset by the manufacturer, Hyundai’s PESS can predefine different engine sounds such as dynamic, sporty and extreme, depending on the vehicle. The driver can easily select and adjust each engine sound type, volume and tone as well as the sensitivity of the accelerator using the audio-video navigation system in the dashboard.

A unique solution

Wookeun and his colleagues in the Brüel & Kjær Innovation Lab met the goals in roughly one year, and Hyundai started using the new software tools for ASD in 2018. To Brüel & Kjær’s knowledge, it is the first time any company has developed such a solution. The NVH desktop simulator that is part of the solution does not generate CAN bus signals that can interact with Hyundai’s ASD controllers. However, Brüel & Kjær made a tool for the simulator that generates appropriate CAN bus signals and unique new software connects the NVH Simulator to the ASD controller to generate the ASD sounds according to the simulator’s operatingconditions.

“In an on-road situation, there’s a mixture of the ASD sounds from the loudspeakers and the vehicle sound on road. My goal was to simulate this by performing the binaural synthesis of ASD sounds from the loudspeakers and combining it with the binaural signal from the NVH Simulator in the laboratory situation,” says Wookeun.


What is CAN BUS?

CAN bus is a standard controller area network that collects driving data such as rpm and torque from the vehicle.


Hyundai can now conduct desktop ASD tuning with and without vehicle operating sound, so they can investigate the interaction between the existing vehicle sound and the ASD sound.

Since the tuning results should also match whatever type of sound is being targeted (for example, sporty or powerful), Hyundai is also now able to perform desktop listening experiments to find out which ASD tuning results in the sound closest to the target. And, they can analyse which objective parameters cause people to react negatively to a sound they’re investigating.

“PESS is the first functionality in the world that fits individual customer needs, and it provides customers with a pleasant driving experience.”
Eun Soo Jo, Senior Research Engineer at HMC (Hyundai Motor Company)
knowledge, resource center, articles, sound active system

Together for a better future

“Brüel & Kjær’s NVH Simulator and the tools they developed for this project enable us to have a faster development process. Since Hyundai Motors develops various kinds of engines and audio specifications in many countries, it’s very challenging to develop all the engine sounds in a prototype vehicle. A virtual development environment was necessary,” explains Dr. Park.

“Combining the NVH Simulator and ASD tuning process is a good example of a virtual environment for ASD sound design,” he says.

“We see potential for NVH development and sound design based on computer-aided engineering and experimental data using these new tools,“ Dr. Park adds. “The tools may also be useful for the development of EV, environmentally friendly vehicles, and future mobility.”

Support Content