arrow_back_ios

Main Menu

See All Software See All Instrumente See All Aufnehmer See All Schwingungsprüfung See All Elektroakustisch See All Akustische End-of-Line-Testsysteme See All Events See All Akademie See All Anwendungen See All Industrien See All Kalibrierung See All Ingenieurdienstleistungen See All Unterstützen
arrow_back_ios

Main Menu

See All Durability See All Reliability See All Analyse Simulation See All DAQ See All API Treiber See All Dienstprogramm See All Vibrationskontrolle See All Kalibrierung See All DAQ See All Handheld See All Industriell See All Power Analyzer See All Signalaufbereiter See All Akustik See All Strom und Spannung See All Weg See All Kraft See All Wägezellen See All Mehrkomponenten See All Druck See All Dehnung See All Dehnungsmessstreifen See All Temperatur See All Neigen See All Drehmoment See All Vibration See All Zubehör See All Steuerungen See All Messerreger See All Modalerreger See All Leistungsverstärker See All Shaker Systeme See All Testlösungen See All Aktoren See All Verbrennungsmotoren See All Betriebsfestigkeit See All eDrive See All Sensoren für Produktionstests See All Getriebe See All Turbolader See All Schulungskurse See All Akustik See All Anlagen- und Prozessüberwachung See All Elektrische Energie See All NVH See All Kundenspezifische OEM-Sensoren See All Smarte Sensoren See All Schwingbelastung See All Strukturelle Integrität See All Automobil & Bodentransport See All Druckkalibrierung | Sensor | Messumformer See All Kalibrierung oder Reparatur anfordern See All Kalibrierung und Verifizierung See All Kalibrierung Plus Vertrag See All Brüel & Kjær Support
arrow_back_ios

Main Menu

See All Aqira See All nCode Viewer (DE) See All Weibull++ - NEW TEST (DE) See All Weibull++ - NEW TEST (DE) See All BlockSim - New Test (DE) See All BlockSim - New Test (DE) See All XFRACAS - New Test (DE) See All XFMEA - New Test (DE) See All XFMEA - New Test (DE) See All RCM++ - New Test (DE) See All RCM++ - New Test (DE) See All SEP - New Test (DE) See All SEP - New Test (DE) See All Lambda Predict - New Test (DE) See All Lambda Predict - New Test (DE) See All MPC - New Test (DE) See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Elektroakustik See All Umgebungslärm See All Identifizierung der Lärmquelle See All Produkt-Lärm See All Schallleistung und Schalldruck See All Vorbeifahrgeräusche See All Produktionsprüfung und Qualitätssicherung See All Maschinenanalyse und -diagnose See All Strukturelle Gesundheitsüberwachung See All Strukturüberwachung See All Batterieprüfung See All Einführung in die Messung elektrischer Leistung bei transienten Vorgängen See All Transformator-Ersatzschaltbild | HBM See All OEM-Sensoren für die Landwirtschaft See All OEM-Sensoren für Robotik- und Drehmomentanwendungen See All OEM-Sensoren für die Agrarindustrie See All OEM-Sensoren für Robotik- und Drehmomentanwendungen See All Strukturelle Dynamik See All Prüfung der Materialeigenschaften See All Sicherstellung der strukturellen Integrität von Leichtbaustrukturen See All Elektrifizierung von Fahrzeugen See All Seiten, die nicht migriert wurden See All Software-Lizenzverwaltung

Vorhersage der Ermüdungslebensdauer und Test-CAE-Korrelation

Three virtual vibration fatigue scenarios you should know about

Vibrations on a physical part can be a source of fatigue.  These vibrations are described in the frequency domain and are usually represented as random power spectral densities (PSDs), harmonics (sine tones and sweeps), or some combination of the two.  In the real world, these vibrations can come from multiple directions (e.g., X, Y, and Z) at the same time.

Electrodynamic shaker tables are commonly used to replicate the vibration environment in a test scenario.  However, tests conducted on an electrodynamic shaker are often limited to a single axis of excitation.

The test can be run as a duty cycle to address this limitation. With this approach, the physical part is repositioned each event in the duty cycle to expose the part to vibrations in each direction.  However, each direction is run independently and sequentially.  Thus, any interaction between the different directions is not captured.

Fortunately, nCode DesignLife can perform virtual vibration fatigue analysis in all the scenarios described below. 

1. Single-axis, random excitation

 

The simplest vibration fatigue analysis within DesignLife uses a single-axis random PSD to describe the loading.  In addition to the PSD loading, the analysis requires a frequency response function (FRF) from finite element analysis (FEA). This consists of a set of real and imaginary stresses calculated at various frequencies and driven by a unit load.

This vibration-based analysis results in stress cycles with a zero mean stress.  DesignLife is also capable of superimposing the vibration loading onto a static offset such as a gravitational force or preload.

Additionally, thermal effects can be considered using multitemperature fatigue curves.  Temperatures can be constant across the whole model or they can vary if they were solved for in FEA.

2. Multi-axis, sequential, random excitation

 

Multiple single-axis random PSDs can also be run as a series of vibration fatigue analyses in DesignLife.  First the X-axis is excited for a prescribed time, then the Y-axis, then the Z-axis. This simulates the common electrodynamic shaker test where each direction is excited individually and sequentially. 

This virtual vibration fatigue analysis is also useful when evaluating a multi-PSD test conducted on a single axis. For example, it may be used to evaluate sequential tests of a single axis under different conditions.

3. Multi-axis, simultaneous, random excitation

 

Finally, simultaneous excitations from multiple directions can be analyzed by DesignLife.  This type of loading is often found in real world applications.  Just like the two scenarios above, a random PSD is used to describe the excitation of each direction.  Additionally, cross spectral densities (CSDs) are used to describe how each excitation interacts with the others. 

Thus, measured loads are first recorded in the time domain then converted into the frequency domain.

Ready to achieve success through failure prediction?