Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Handheld Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration Transducers See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Upcoming Webinars See All Acoustics See All Asset & Process Monitoring See All Durability & Fatigue See All Electric Power Testing See All NVH See All OEM Custom Sensors See All Reliability See All Structural Dynamics See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Machine Analysis and Diagnostics See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management See All Business Ethics

Design for weight optimization

Historical dependency

The revolutionary invention and evolution of the wheel is a clear gauge of technological advancement of a civilization. Without this revolutionary invention, modern society and growth would be limited if not stalled. Transportation is one of the driving forces of today’s economy, making the wheel a critical instrument. Safety and fuel consumption standards are motivating advanced manufacturing and material sciences to further optimize wheels. Although there are probably many factors that are propelling wheel evolution, the factor at the top of the list is durability. A few hundred years ago inventors realized that normal strength assessment methods did not apply well to structures with repeated loading such as wheels. This realization gave birth to the first systematic fatigue investigation that was done between 1852 and 1870 by a German engineer named August Wohler.

Technological progress

Jumping forward to 2017, material sciences, advanced manufacturing, and analytical tools have helped Accuride Corporation develop highly engineered aluminum and steel wheels for the commercial vehicle industry worldwide. Fatigue and durability testing have become the primary design drivers for wheels. Advanced understanding of fatigue analysis and testing capability is needed in order to achieve optimized designs. Accuride has relied on nCode software from HBM Prenscia to provide the tools to reach their design goals.

Just like the evolution of the wheel has been fueled by the evolving needs of society to increase efficiency and safety, our society has now added the new drivers of energy efficiency and environmental impact while continuing to meet the expectations of prior years.

Design change validation

Accuride Corporation (originally Firestone Steel Products) has been in the wheel business since 1905 and is answering the continual needs of its customers and the commercial trucking industry for technological advancement to carry larger loads while using less fossil fuel. While offering weight savings and lower rolling resistance, Accuride ensures that those changes do not compromise the safety and integrity of the wheel. The new designs are subjected to reliability testing that goes above and beyond industry standards including straight rolling of a wheel and tire assembly and rotating bending tests. Accelerated testing is done at elevated loads to a specified number of cycles. Due to the potential variability in testing, Accuride significantly exceeds industry standards despite the financial and time demands of physical testing. For every prototype design that is tested, custom-built tooling and manufacturing processes must be developed to generate sufficient samples for design validation. Prototype builds and testing can take weeks and even months. If samples do not pass the qualification testing, then a new design iteration is started and the clock is reset for samples and testing, thus prolonging product release. Therefore, minimizing design iterations is critical in managing development costs and time-to- market goals.
Testing bench used to gather data on straight rolling and bending stress conditions

Customized analysis process saves time and resources

A unique feature in steel wheels is the presence of an assembly seam weld. Weld features are notorious for being fatigue weak spots in a design if not manufactured to the highest standards. Accuride uses the DesignLife Seam Weld option to evaluate the potential fatigue performance of seam welded joints in steel wheel designs. The module simplifies the design process by following well accepted weld analysis methods in a streamlined manner.

Accuride also uses the Strain Gauge Positioning option to calculate the optimum position and number of gauges needed. Strain gauges measure the actual physical strains, but actual usage environments can be extremely complex. Proper placement of strain gauges is key to correlation between mathematical loading models and actual driving conditions. By applying some reverse engineering, loading models can be developed to accurately replicate strain fields created from actual usage loading. The analysis environment can also easily be customized, including the ability to evaluate multiple load cases simultaneously.

Software customization environment

During a crucial point of the design process, Accuride requires a tool capable of handling large amounts of datasets. nCode GlyphWorks is the necessary tool used to compress this huge amount of data. GlyphWorks is a powerful data processing system for engineering test data analysis with specific application to durability and fatigue analysis. It provides a graphical, process-oriented environment designed to create a workflow by dragging and dropping blocs to represent the process graphically. The software provides a wide range of data processing capabilities with specialized options such as fatigue analysis, accelerated testing and frequency domain tools for ride quality analysis.

Accuride states, "Computer modeling reduces our time to market as well as reducing developing costs and testing times. Using nCode software, we are able to pinpoint any stress points and fracture of each design by identifying high stress areas; those areas can be addressed and targeted more specifically during testing to ensure the robustness of the new design."

nCode helps Accuride analyze complex biaxial wheel test data

FEA and other numerical methods are heavily used to evaluate new designs. These methods significantly help to reduce product time to market. However, these analysis methods can at times use significant resources. To predict the fatigue life of a wheel, you must understand the strain history in the wheel through at least one revolution. Sometimes, incrementally loaded models can be used, but require multiple load cases FE solutions for each loading direction. For example, a wheel with 10 hand holes might require 20 load cases for each design iteration to obtain the necessary strain history used as input to fatigue predictions. Accuride explains: "We collaborated with nCode to develop methods for achieving the same strain history with only 2 FEA solutions saving roughly 10x in the FEA solution times. This achievement is possible by leveraging the symmetry in the geometry of the part even though the loading does not share the same symmetry."

Accuride follows industry design and test standards set by the Society of Automotive Engineers (SAE). In North America, SAE has established two basic tests for evaluating wheels on commercial vehicles. These tests include a straight rolling with a tire, and a rotating bending test without a tire. Accuride states that: "Historically, these tests have served the industry very well. In many other parts of the world the basic SAE tests are also used, but a more complex biaxial test is becoming the standard." A biaxial test is capable of applying radial and lateral loading simultaneously in a series of complex loading patterns, resulting in a more representative loading experience.

Accuride describes its continued partnership with HBM Prenscia: "As Accuride becomes a global player in the commercial wheel market, we are not only learning to do biaxial testing, but also to predict fatigue performance prior to testing on this more complex test. nCode has played an important role helping to develop and implement enhanced performance predictive methods, saving Accuride countless hours of product development time."

Want to learn more about the featured products?

Test data processing and durability analysis

nCode GlyphWorks is a data processing system that contains a powerful set of pre-defined tools for performing durability analysis and other insightful tasks such as digital signal processing. Designed to handle huge amounts of data, GlyphWorks provides a graphical, process-oriented environment that contains leading analysis capabilities for saving both time and money in environmental qualification and product validation.

CAE-based fatigue analysis

nCode DesignLife is an up-front design tool that identifies critical locations and calculates realistic fatigue lives from leading finite element (FE) results for both metals and composites. Design engineers can go beyond performing simplified stress analysis and avoid under- or over-designing products by simulating actual loading conditions to avoid costly design changes.

Ready to achieve success through failure prediction?