arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Accessories See All DAQ Software See All Drivers & API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All LDS Shaker Systems See All Power Amplifiers See All Vibration Controllers See All Accessories for Vibration Testing Equipment See All Training Courses See All Articles See All Whitepapers See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All Accessories See All Accessories See All BK Connect / Pulse See All API See All Microphone Sets See All Microphone Cartridges See All Acoustic Calibrators See All Special Microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Accessories See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Impulse hammers / impedance heads See All Cables See All Accessories See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Process Weighing See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Sound Intensity: Theory and Measurement


Acoustic measurements and acoustic theory have not always progressed side by side. The publication of Lord Rayleigh's influential work, "The Theory of Sound", laid the foundations of modern acoustics. The quantity sound intensity was fundamental to this theory. But a full hundred years were to elapse before the emergence of a thoroughly practical method of measuring sound intensity.
GET THE FULL HANDBOOK
SOUND INTENSITY
BY BRÜEL & KJÆR

DOWNLOAD NOW

What is Sound Intensity

Sound intensity describes the rate of energy flow through a unit area. Sound intensity also gives a measure of direction as there will be energy flow in some directions but not in others. Therefore sound intensity is a vector quantity as it has both magnitude and direction. On the other hand, the pressure is a scalar quantity as it has magnitude only. Any piece of machinery that vibrates radiates acoustical energy.

  • Sound power is the rate at which energy is radiated [energy per unit time).
  • Sound intensity describes the rate of energy flow through a unit area.

In the SI system of units, the unit area is 1 m2. And hence the units for sound intensity are Watts per square meter. Sound intensity also gives a measure of direction as there will be energy flow in some directions but not in others. Therefore sound intensity is a vector quantity as it has both magnitude and direction. On the other hand, the pressure is a scalar quantity as it has magnitude only.

Download Handbook

WHAT YOU WILL LEARN 

  1. What is Sound Intensity?
  2. Why Measure Sound Intensity?
  3. How is Sound Intensity Measured?
  4. Calculation of sound intensity

Usually, we measure the intensity in a direction normal (at 90°) to a specified unit area through which the sound energy is flowing. We also need to state that sound intensity is the time-averaged rate of energy flow per unit area. In some cases, energy is transferred or traveling back and forth. This will not be measured; if there is no net energy flow there will be no net intensity.

New sound level

In the diagram, the sound source is radiating energy. All this energy must pass through an area enclosing the source. Since intensity is the power per area, we can easily measure the normal spatial-averaged intensity over an area which encloses the source. We then multiply the intensity by the area to find the sound power.

Note that intensity (and pressure) follows the inverse square law for free field propagation. As shown in the diagram, with a distance of 2r from the source, the area around the source is 4 times larger, than the area at a distance r. Still, the power radiated must be the same whatever the distance, and consequently the intensity, the power per area, must decrease.

Why Measure Sound Intensity?

On the factory floor, we can make sound pressure measurements and find out if the workers risk hearing damage. But once we have found this, we may well want to reduce the noise.

To do this, we need to know how much noise is being radiated and by what machine. We, therefore, need to know the sound power of the individual machines and rank them in order of highest sound power. Once we have located the machine making the most noise we may want to reduce the noise by locating the individual components radiating noise.

We can do all this with sound intensity measurements.

Why measure sound intensity

Previously we could only measure pressure which is dependent on the sound field. Sound power can be related to sound pressure only under carefully controlled conditions where special assumptions are made about the sound field.

Specially constructed rooms such as anechoic or reverberant chambers fulfill these requirements. Traditionally, to measure sound power, the noise source had to be placed in these rooms. Sound intensity, however, can be measured in any sound field. No assumptions need to be made.

This property allows all the measurements to be done directly in situ. And measurements on individual machines or individual components can be made even when all the others are radiating noise. This is because steady background noise makes no contribution to the sound power determined when measuring intensity.

Because sound intensity gives a measure of direction as well as magnitude it is also very useful when locating sources of sound. Therefore the radiation patterns of complex vibrating machinery can be studied in situ.

How is Sound Intensity Measured?

The Euler Equation

Finding the Particle Velocity Sound intensity is the time-averaged product of the pressure and particle velocity. A single microphone can measure pressure — this is not a problem.

But measuring particle velocity is not as simple. The particle velocity, however, can be related to the pressure gradient (the rate at which the instantaneous pressure changes with distance) with the linearized Euler equation.

With this equation, it is possible to measure this pressure gradient with two closely spaced microphones and relate it to particle velocity. Euler's equation is essentially Newton's second law applied to a fluid. Newton's Second Law relates the acceleration given to add mass to the force acting on it.

Newton equation

If we know the force and the mass we can find the acceleration and then integrate it with respect to time to find the velocity. With Euler's equation, it is the pressure gradient that accelerates a fluid of density p.

With knowledge of the pressure gradient and the density of the fluid, the particle acceleration can be calculated. Integrating the acceleration signal then gives the particle velocity.

Approximation of the Finite Difference

The pressure gradient is a continuous function, that is, a smoothly changing curve. With two closely spaced microphones, it is possible to obtain a straight-line approximation to the pressure gradient.

This is done by taking the difference in pressure and dividing by the distance between them. This is called a finite difference approximation. It can be thought of as an attempt to draw the tangent of a circle by drawing a straight line between two points on the circumference.

Calculation of sound intensity

The pressure gradient signal must now be integrated to give the particle velocity. The estimate of particle velocity is made at a position in the acoustic center of the probe, between the two microphones. The pressure is also approximated at this point by taking the average pressure of the two microphones. The pressure and particle velocity signals are then multiplied together and time averaging gives the intensity.

The domain formulation

A sound intensity analyzing system consists of a probe and an analyzer. The probe simply measures the pressure at the two microphones. The analyzer does the integration and calculations necessary to find the sound intensity.

The equations are not new. What is new is the use of modern signal processing techniques to implement the equation and produce instant measurement results.

This can be done in two ways:

  1. Directly using integrators and filters (analog or digital) to implement the equation step by step.
  2. Using an FFT analyzer.

The latter relates the intensity to the imaginary part of the cross-spectrum (a mathematical term) of two microphone signals. The formulations are equivalent - and both reveal the sound intensity...