Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Industrial electronics See All S&V Signal conditioner See All DAQ Systems See All Power Analyser See All S&V Hand-held devices See All High Precision and Calibration Systems See All Test Solutions See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Vibration See All Torque See All LDS Shaker Systems See All Vibration Controllers See All Power Amplifiers See All Accessories for Vibration Testing Equipment See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People

Main Menu

See All QuantumX See All LAN-XI See All SomatXR See All MGCplus See All CANHEAD See All Optical Interrogators See All GenHS See All API See All Microphone Cartridges See All Microphone Sets See All Microphone Pre-amplifiers See All Sound Sources See All Acoustic Calibrators See All Special Microphones See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Rotating See All Non-rotating (calibration) See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

While CIC is not technically a ‘calibration’ method, the technique is sensitive to any change in the microphone cartridge’s capacitance and the connected preamplifier (and measurement cable), which indicates the microphone channel’s condition.

knowledge, resource center, articles, charge injection

ERLING SANDERMANN OLSON Specialist in  microphone calibration, Brüel & Kjær

The Principle of Charge Injection Calibration 

In CIC, a signal is introduced through a small, highly stable capacitor built into the preamplifier in series with the combination of the microphone cartridge and preamplifier input, see fig. 1.

The signal is divided between the small capacitor and microphone-preamplifier impedance, leading to an output approximately inversely proportional to the microphone cartridge capacitance. Any change in the microphone capacitance will be reflected in a change in the output from the measurement channel.

As the signal is introduced directly to the microphone cartridge, changes in the electrical part of the channel will also be reflected in the output. When the signal is turned off, the capacitor has a small contribution to the input capacitance of the microphone preamplifier with very little influence on the properties of the measurement channel.

knowledge, resource center, articles, charge injection

Figure 1. CIC circuit. Typical values for a ½-inch microphone: Cm = 15 pF, Cc = 0.2 pF, Ci = 0.1 pF and Ri = 15 GΩ

Fault Detection Using CIC

To use CIC, the measurement channel’s response to the CIC signal is registered for reference, while the channel condition is known. A signal is applied for verification, and the response is compared to the reference response. If there is no difference, it is an indication that the channel is still in good condition.

Deviation from the reference response strongly indicates a fault in the measurement channel, and an investigation of the channel is required. Typical faults that can be detected with CIC include broken diaphragms, short-circuited microphones, contact failure between cartridge and preamplifier, and cable breaks.

knowledge, resource center, articles, charge injection
Figures 2a, b and c: Comparisons of responses that differ from the normal condition indicate faults

Other faults may be detected with CIC, depending on how severe they are. Changes in diaphragm tension or polarization voltage directly influence the sensitivity and frequency response of the microphone, but such changes have a relatively small influence on microphone cartridge capacitance.

For example, a 2 dB change in the diaphragm tension of a typical sound level meter microphone changes its capacitance (and thus the CIC signal) by approximately 0.5 dB.

CIC is not a replacement for acoustical verification, but CIC can extend the interval between routine acoustical calibrations. Also, CIC is an excellent tool for registering severe faults, but is limited when checking for small sensitivity changes, and even less effective for checking microphone frequency response.

With high-quality, stable microphones, faults are likely to be due to events that significantly change the microphone. A stable CIC response is a reasonable indication that the measurement channel is functioning correctly. Our Calibration Systems provide automated primary and secondary calibration of all measurement microphone, hydrophone, and preamplifiers.



CIC is not actually a ‘calibration’ method. The name was intended to emphasize its application. To avoid the use of electrostatic actuators in outdoor microphones – due to a risk of false alarms and damage to the microphone – insert voltage preamplifiers were used to check the electrical part of the channel.

These preamplifiers are normally used for open-circuit sensitivity microphone calibration. This method was termed insert voltage calibration (IVC). Later, microphone capacitance was included in the check, which was a leap forward in the channel check compared with the initial IVC method.

To emphasize the leap forward, IVC became CIC.

Support Content