Faster than a formula-1 racecar: The new pluvial erosion test bench of the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) accelerates a model rotor blade to as much as 550 km/h for testing the abrasive effect of raindrops on the surface. Rotor blades are exposed to powerful environmental influences: rain, hail, sand, salty seawater and dirt strike the surfaces resulting in accumulations of dirt and rough spots on the paint and coating systems, especially on the leading edges of the blades. Changes in temperature and UV radiation further intensify these effects.
Faster than a formula-1 racecar: The new pluvial erosion test bench of the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) accelerates a model rotor blade to as much as 550 km/h for testing the abrasive effect of raindrops on the surface. Rotor blades are exposed to powerful environmental influences: rain, hail, sand, salty seawater and dirt strike the surfaces resulting in accumulations of dirt and rough spots on the paint and coating systems, especially on the leading edges of the blades. Changes in temperature and UV radiation further intensify these effects.
"The test conditions are variable – rotational speeds and climatic conditions can be adjusted individually according to actual conditions of the relevant rotor blades," explains Buchholz."Recorded weather and operating data provide us with the necessary basis. In this manner we would like to ensure both the quality of the test bench and the validity of the final results. With the integrated PMX measurement and control system from Hottinger Baldwin Messtechnik, we were able to implement all the necessary measurement and control tasks efficiently and cost-effectively."