arrow_back_ios

Main Menu

See All Acoustic End-of-Line Test Systems See All DAQ and instruments See All Electroacoustics See All Software See All Transducers See All Vibration Testing Equipment See All Academy See All Resource Center See All Applications See All Industries See All Insights See All Services See All Support See All Our Business See All Our History See All Our Sustainability Commitment See All Global Presence
arrow_back_ios

Main Menu

See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All DAQ Systems See All High Precision and Calibration Systems See All Industrial electronics See All Power Analyser See All S&V Hand-held devices See All S&V Signal conditioner See All Test Solutions See All DAQ Software See All Drivers & API See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All Utility See All Vibration Control See All Acoustic See All Current / voltage See All Displacement See All Load Cells See All Pressure See All Strain Gauges See All Torque See All Vibration See All Accessories for Vibration Testing Equipment See All Power Amplifiers See All LDS Shaker Systems See All Vibration Controllers See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All Our People
arrow_back_ios

Main Menu

See All CANHEAD See All GenHS See All LAN-XI See All MGCplus See All Optical Interrogators See All QuantumX See All SomatXR See All BK Connect / Pulse See All API See All Microphone Sets See All Microphone Cartridges See All Acoustic Calibrators See All Special Microphones See All Microphone Pre-amplifiers See All Sound Sources See All Accessories for acoustic transducers See All Experimental testing See All Transducer Manufacturing (OEM) See All Non-rotating (calibration) See All Rotating See All CCLD (IEPE) accelerometers See All Charge Accelerometers See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management
null

Overview: How to Prevent Unwanted Temperature Effects on Measurement Results with Strain Gauges?

Temperature changes during a measurement with strain gauges can frequently have undesirable effects on the measurement result. Fortunately a number of options are available – with the "right" choice of a strain gauge, the one that suits the application best, by making use of the effects of a Wheatstone bridge circuit with a half or full bridge circuit, and also with computational methods – to compensate largely for unwanted temperature effects.

Please be aware: The temperature range of foil strain gauges is limited by the materials that are used. The maximum range is about 300°C to 400°C. If measurements have to be conducted at higher temperatures, high-temperature strain gauges that work according to different principles must be used. Temperature limits of HBM strain gauges are: 

  • Pre-wired SG: 150°C
  • Y + G series: 200°C
  • C series: 250°C
  • M series: 300°C

Of course the temperature limit of the adhesive you are using must also be observed. If an adhesive becomes soft as the temperature rises, the strain will no longer be accurately transfered. Temperature limits of HBM strain gauge adhesives are:

  • X60: 60°C
  • Z70: 120°C
  • P250: 250°C
  • X280: 280°C
  • EP310N: 310°C

Which Quantities Change Temperature Dependently and What You Can Do to Counteract This?

Influence quantity

Possible compensating measure

Material expansion Use self-compensated strain gauges
Cable resistance Use multiwire techniques
Temperature coefficient of the gauge factor Very low, usually ignored. Computational compensation while simultaneously measuring the temperature is possible.
Temperature influence on the modulus of elasticity Usually ignored
The following points, which may also be related to temperature, are also relevant:
Self-heating of the strain gauge Observe the maximum excitation voltage
Climate/relative humidity Careful covering of the measuring point
Adhesive creep Observe the temperature limits of the adhesive you are using

1. Influence Quantities

Special attention should be paid to these two influence quantities:

  • Material expansion ("apparent strain")
  • Effects resulting from the resistance of the measuring cable.

In addition to these two main factors, there are other influence quantities for which temperature effects play a role. The sum of these effects can be ignored, however, and can usually be resolved through computational compensation (see the explanation of computational compensation below).

1.1 Material Expansion ("Apparent Strain")

Materials that are being measured expand as the temperature increases. This expansion is described by the expansion coefficient of the material. The value depends on the material. For steel it is approximately 11 ppm/K, for example, meaning an expansion of 11 µm/m for a thermal difference of plus/minus one degree Celsius. Material expansion, influenced by changes in temperature, ultimately results in measuring an "apparent" strain, in other words a strain with no load.

Temperature Compensation of Strain Gauges

Change in volume

Temperature Compensation of Strain Gauges

The best possible counter measure in this case is the use of self-compensated strain gauges. The temperature behavior of these strain gauges is adapted to a specific material so that they compensate for the apparent strain (and therefore the temperature-induced expansion of the measuring body).
knowledge, resource center, articles, strain measurement basics, strain gauge fundamentals, how to install strain gauges video tutorial

Article: Determination of the Coefficient of Thermal Expansion of a Material Using Strain Gauges

Learn how the coefficient of thermal coefficient of expansion of aluminium can be determined using "mismatched" foil strain gauges.

1.2 Cable Resistance

Temperature Compensation of Strain GaugesWhen a two-conductor circuit is used (see diagram) the resistance of a measurement cable is added to the resistance of the strain gauge – and therefore influences the measurement. In addition to the resulting zero drift and the reduction of the effective gauge factor, the resistance of the measuring cable is also temperature-dependent.

A suitable counter measure in this case is the use of multiwire techniques as described below.

1.3 Temperature Coefficient of the Gauge Factor

The gauge factor is the most important property of the strain gauge. It describes the correlation between strain and change in resistance. The gauge factor is temperature-dependent. With typical temperature coefficients of the gauge factor of 0.01 %/K, its distorting effect on the measurement result is usually relatively small and is therefore mostly ignored. However, a computational compensation (for the temperature measurement) is also feasible.

Temperature Coefficient of the Gauge Factor

1.4 Temperature Dependence of the Modulus of Elasticity

The modulus of elasticity is a material-dependent property of the measuring body. It describes the correlation between the measured strain and the mechanical stress. The modulus of elasticity is temperature-dependent. A typical value for steel in this case is approx. -0.02%/K. In experimental stress analysis, the effect of the modulus of elasticity is typically ignored. With high-precision transducers that can be calibrated, compensation is made by means of temperature-dependent nickel elements in the bridge.

Temperature dependence of the modulus of elasticity

1.5 Self-heating of the Strain Gauge (Excitation Voltage)

The excitation voltage causes the strain gauge to heat up in comparison to the measuring body. Depending on the thermal conductivity of the measuring body, heat conductance is more or less absorbed by the measuring body. If the measuring body conducts heat poorly, the result may be a difference in temperature between the measuring body and the strain gauge. This could possibly interfere with the functioning of the self-compensated strain gauge.

Self-heating of the Strain Gauge (Excitation Voltage)

1.6 Climate and Relative Humidity

If the measuring point is not adequately protected, a drift in the zero point may occur depending on the relative humidity. This is due to water molecules of the adhesive and strain gauge carrier material being absorbed (hygroscopy). A suitable counter measure is carefully covering the measuring point.

1.7 Adhesive Creep

As the temperature increases, adhesives become soft and are no longer able to transfer 100% of the strain. In this way they are comparable to a declining gauge factor. Because of this it is important to always observe the temperature limits of the adhesive and to choose them appropriately for the field of application.

2. Compensating Measures

2.1. Self-compensated Strain Gauges

Self-compensated strain gauges are specially developed to compensate for the temperature behavior of certain materials by their own temperature behavior. This means that they counteract the apparent strain (and thus the temperature-induced expansion of the measuring body). Therefore a strain gauge with a temperature response suitable for the material of the measuring body is selected.

Temperature adjustments for commonly used materials with self-compensated strain gauges:

Code Material (examples) α (·10-6 / °K)
1 Ferritic steel  10.8
3 Aluminium  23
5 Austenitic steel  16
6 Silica / composite  0.5
7 Titanium / gray cast iron  9.0
8 Plastic  65
9 Molybdenum  5.4

Selecting a strain gauge that is adapted to the material compensates for the lion's share of apparent strain. A residual error remains (non-linear component). This error is determined during production and is included in the data sheet (see illustration). For more extensive calculations, for example with greater temperature changes, you can also perform a computational compensation (see below).

null
catman software temperature compensation

Article: Temperature compensation of strain gauge ¼-bridges with an example calculation

LUnderstand the ¼-bridge compensation calculation step by step based on a practical example.

2.2 Wheatstone Bridge Circuit and Multiwire Circuit

null

Along with the use of self-compensated strain gauges, connecting to a half or full bridge circuit as well as the use of a three or four-wire circuit is another important method of compensation which is especially useful for minimizing or even completely eliminating the effect of cable resistance.

The Wheatstone bridge circuit converts very small changes in resistance into a measurable electric voltage. The four resistors can be replaced by one (quarter bridge circuit), two (half bridge circuit) or four (full bridge circuit) strain gauges.

Since the individual branches flow with different signs in the Wheatstone bridge circuit, there is a possibility for compensation. This temperature compensation effect can be demonstrated based on the example of a bending beam:

Temperature Compensation with Wheatstone Bridge CircuitUnder positive load, the spring exhibits strain (+) on the top and compression (-) on the bottom. If two strain gauges are connected to a Wheatstone bridge circuit, the result is to double the signal. If temperature-dependent strain occurs, the strain appears to both strain gauges with the same sign. Thus the effects cancel each other out in the Wheatstone bridge circuit.

The effect of cable resistance can be largely compensated for selectively by a three wire circuit. To do this the supply lead and an additional third lead are wired into different branches of the Wheatstone bridge circuit. Since the two cables behave oppositely due to the symmetry of the structure and thus compensate for each other mutually, the cable resistances are compensated for by the three wire circuit, except in the case of asymmetrical cables and with temperature gradients.

All cable effects are even compensated for by the HBM's patented four-wire circuit.

nullnull

2.3 Computational Compensation

Computational compensation can be performed for the residual error with self-compensated strain gauges, for the error of a strain gauge that is not adjusted or is poorly adjusted, and also for other small errors (such as the temperature dependence of the gauge factor).

To do this the temperature is measured in parallel and the measured strain is corrected by a corresponding online or subsequently calculated channel. The temperature gradients must also be considered. Multiple measuring points must be provided for the temperature if necessary. Software tools such as catman® from HBM also offer appropriate functions for computational compensation.

null

2.4 Using a Carrier-Frequency Amplifier

In addition to the sensor itself, the amplifier also plays an important role in considering temperature influences. This applies especially with thermoelectric voltages: Due to the thermoelectric effect, a temperature-dependent electric voltage is produced where different materials are connected. Thermocouples make use of this effect. However, this also has an effect on a strain gauge measurement system (temperature-dependent zero error (zero signal return)).

Thermoelectric voltage can be largely compensated for by using a carrier-frequency amplifier such as QuantumX MX1615B or QuantumX MX1616B from HBM. In this case there is a sinusoidal excitation voltage so that the measurement signal can be modulated to a periodic signal. Demodulation is performed digitally after the signal passes a band pass filter so that the quasi-static thermoelectric voltages can be filtered out on the way to the amplifier.

Checklist: The Most Important Points Regarding Temperature Compensation of Strain Gauges

Depending on the influence quantity, various options are available for minimizing the influence of temperature effects on the measurement result. Here is your checklist for measurements with low temperature influence:

  • Use self-compensated strain gauges
  • Use a Wheatstone bridge circuit with a three or four wire circuit
  • Use a carrier-frequency amplifier to exclude thermoelectric voltages
  • For computational compensation: Perform a parallel temperature measurement
  • Observe the temperature limits of the strain gauges and adhesive

Support Content