Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance

Main Menu

See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management


MAHLE powertrain, UK


One of the world's leading automotive consultancies, Mahle Powertrain of Northampton in the UK, has turned to HBK in its drive to produce cleaner burning engines. Throughout the automotive industry manufacturers are seeking to develop more ecologically friendly engines by improving engine fuel consumption and simultaneously reducing exhaust emissions.


Auto-ignition improves efficiency

The theory behind the CAI engine is that, by invoking auto-ignition in the engine, it is possible to significantly improve thermal efficiency. Mahle Powertrain believes that it is possible to release some 45% of the fuel’s energy using this technique compared with the roughly 25 % released in a typical spark ignition engine.

Engine technology for the future…

To achieve auto-ignition, Mahle Powertrain needed to change the standard combustion cycle by trapping, or re-cycling, large quantities of burned gases inside the engine cylinder after initial combustion rather than allowing these to exhaust to atmosphere. These gases then heat the next charge of freshly aspirated fuel-air mixture entering the combustion chamber through multiple ports and, after compression, causing autoignition.
Adding to the engineering complexity is the challenge that the CAI engine can only be used over a limited operating window. At higher speeds and loads the engine reverts back to conventional spark ignition operation.

…in collaboration with HBK

Working closely with HBK’s team in the UK, Mahle Powertrain used their piston telemetry system, comprising a mechanical linkage mechanism from the conrod big end, to route signal wires enabling the acquisition of real-time piston data from a fired engine. By fitting eight thermistors at specific points just below the surface of the piston’s combustion bowl and ring lands it was possible to derive the actual temperature measurements within the piston when the engine was running.

Because of the temperatures in the pistons, glasscoated silicon chip thermistors were used of the negative temperature coefficient variety.

Data acquisition with MGCplus and catman®

This set-up produced a twelve-point calibration curve for each sensor at temperatures of up to 350°C. The curves were incorporated into catman® as user scaling files (USC). catman® was configured to perform linear interpolation between the calibration points.

To provide a complete picture for Mahle Powertrain, HBK had a number of other inputs into the MGCplus. The oil feed temperature and flow, which is controlled automatically using a heater and valve, were also monitored along with other basic engine parameters such as the torque and speed. The measured data was simply and clearly displayed using catman® real-time graphical tools.

Carl Godden, senior instrumentation engineer at Mahle Powertrain recommends the solution:

Carl Godden

MAHLE Powertrain

New strategy of MAHLE focuses on three strategy fields: Electrification, Thermal Management, and ICE, i.e., components for efficient and clean internal combustion engines.

Mahle Powertrain has a well-deserved international reputation for its research that has been directed towards developing a gasoline Controlled Auto-Ignition (CAI) engine to improve fuel economy.

More about MAHLE Powertrain

Carl Godden

Technology used