Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

Selection Guide for Piezo Sensors: How to Make the Right Decision

Piezoelectric sensors: Which sensor is the right one for my application?

The piezoelectric principle enables force sensors to be designed which have distinctly different characteristics than sensors based on strain gauges. Piezoelectric force sensors consist of slices of monocrystalline crystal that creates an electric charge when subjected to a compressive force. In general, two such slices are used, with an electrode inserted in between. The entire structure is enclosed in a housing. The charge is absorbed by the electrode and the housing and is transmitted to a charge amplifier by a coaxial charge cable.


The figure shows the typical layout of a piezoelectric force transducer:

1. Housing
2. Piezoelectric crystal
3. Electrode

Piezoelectric sensors are dependent on good contact between the crystal and the housing. This requires, on the one hand, precise processing of the crystal and component surfaces that come into contact with the crystal, and, on the other hand, the use of pre-stressed sensors. In practice, at least 10 % pre-stress is used to ensure reliable contact – higher pre-stress enhances the metrological properties. The pre-stress must, of course, not overload neither the pre-stressing elements nor the sensor.

Excursus: What determines a piezoelectric sensor’s output signal?

Applying a force to a piezoelectric crystal results in an output signal in the form of a charge Q, measured in pC (10-12 C). The charge can be calculated using the equation:

Q = qxy*F

Where F is the force and qxy the piezoelectric constant. The latter depends on the type of crystal used and the crystal direction that is being loaded. The most commonly used material is quartz, with a sensitivity of 4.3 pC/N and the temperature limit of 200 °C. HBM uses gallium phosphate as well. Its sensitivity is about twice as high as that of quartz (approximately 8 pC/N). Its temperature limit is 850 °C, which, however, cannot be fully utilized with force transducers, since these have a limit of 300 °C due to thermal stress.

Piezoelectric transducers offer many advantages, strain gauge-based sensors too. How do I decide which sensor to use?

The decision of whether to use piezoelectric force sensors or sensors based on strain gauges depends on the application. Piezoelectric sensors are preferable, particularly when the application has one of the following requirements:

  • Confined space for sensor installation
  • Measurement of small forces with a high initial load
  • Wide measuring range
  • Measurement at extraordinarily high temperatures (up to 300 °C)
  • Extreme overload stability
  • High dynamics

Strain gauge-based sensors, too, offer advantages over piezoelectric force sensors; for instance, they enable tensile force to be measured and often are more economical. In addition, they provide better accuracy, drift-free measurement, and static calibration. When it comes to reference measurements, there is no alternative to strain gauge measurement technology. 

We recommend checking, in any case, which transducer meets the requirements of the measuring task at hand in the best and most cost-effective way. When the decision to use a piezoelectric sensor has been made, there remains the question of which force transducer is the right one. In the following, we will take a closer look at the typical fields of application to enable you to make the right choice.

Background – Application conditions indicating that piezoelectric sensors should be used:


1. Confined space for sensor installation

Piezoelectric force sensors can be very compact—e.g. the CLP series with heights of 3 to 5 mm (depending on the size of the force washer). Such sensors are therefore perfectly suited for integration with existing structures.


2. Measurement of small forces with a high initial load

Piezoelectric sensors produce an electrical charge when a force is applied. However, the sensor is subjected to forces that go beyond the actual force measurement, for example, during installation. The resulting charge can be short-circuited, which sets the signal at the charge amplifier input to zero. This enables the measuring range to be adjusted in line with the actual force to be measured. High measurement resolution is thus guaranteed, even if the ratio of initial load to force to be measured is extremely unfavorable. Cutting-edge charge amplifiers such as the CMD600 allow for virtually continuously variable adjustment of the measuring range and thus, support such applications.


3. Wide measuring range

Piezoelectric force transducers show their strengths in multi-stage processes as well. Imagine a multi-stage pressing process; first, high forces are applied in the actual pressing process. The piezoelectric measurement chain is adjusted accordingly. The second stage involves the tracking of the force, i.e. the measurement of minor force variations. In this example too, we benefit from the special feature of piezoelectric sensors that involves physical elimination of the signal at the charge amplifier input. The charge amplifier input is set to zero again and the measuring range can be adjusted to ensure a high resolution.


4. Extraordinarily high temperatures

Some applications require force to be measured at very high temperatures. In these applications, force transducers based on strain gauges reach their physical limits. Piezoelectric force washers of the CHW series, however, have been designed precisely for such applications and can be used for measurement up to 300 degrees C.


5. Extreme overload stability

All piezoelectric sensors, with a few exceptions, have the same sensitivity. This, in turn, means that the output signal of a force sensor with 20 kN capacity at a given force equals the output signal of a sensor with 700 kN capacity. Therefore, in terms of resolution and accuracy, it does not matter which of the two sensors is used. The measurement chain can be set up for maximum force and yet enables the measurement of small forces.


6. High dynamics

Piezoelectric sensors have very small displacements and provide correspondingly high stiffness—this makes them the perfect choice for use in dynamic applications. However, the entire measuring chain has an influence on the dynamic properties. The stiffness of the attachments and subsequent electronics need to be considered as well. Piezoelectric measurement chains, in general, are perfectly suited to the highly dynamic measurement of small forces. Force transducers based on strain gauges, on the other hand, are the first choice when it comes to dynamic measurement of large forces.

If one of these aspects is true for your application, you need a piezoelectric transducer for your force measurement. However, which sensor is the right one?

Excursus: Calibrating a piezoelectric force measurement chain – the reference sensor

We recommend clarifying the requirements to be met by the sensor, before investing in a force sensor that is to be used as a reference for calibrating force measurement chains. A general requirement is that such a force transducer is traceable to a national standard. This means that the reference force transducer must have been calibrated in a DIN EN ISO/IEC 17025 accredited laboratory. These laboratories can prove traceability to the respective national metrology institute (Physikalisch Technische Bundesanstalt, in Germany) and are subject to verifiable guidelines on the methods used and the training of staff.

The video uses the example of the CFW force washer to show how a piezoelectric force measurement chain should be calibrated.

Alongside the suitable transducers, HBM also offers calibration services.

Selection guide for piezoelectric sensors

“Piezoelectric force washers are widely used. Can I use such a sensor in my application as well?”

Most users prefer piezoelectric force washers because they can be integrated with the measurement object or machinery without having to make major mechanical changes. However, these sensors always require mounting with pre-stressing, i.e. an initial load to be applied using screws or pre-stressing sets to prevent damage and ensure sufficient bending moment stability. Please make sure to observe the load-carrying capacity to avoid overloading the sensor or the pre-stressing element (screw). Moreover, calibration is required, since the sensor installation is a decisive factor for the measuring point’s sensitivity. This means that, after mounting, the sensitivity of the measuring point needs to be determined by calibration to enable the force to be measured in Newtons.


“I cannot perform a calibration; however, I would like to use piezoelectric sensors.”

Our recommendation: Type CFT+ force sensors

CFT+ sensors have already been pre-stressed and calibrated at the factory. The mechanical connection is made by flanges. In line with the large measuring range, the force sensors’ sensitivity is specified in three measuring ranges: At nominal (rated) force/capacity, at 10 % of its capacity, and at one percent of its capacity.

The CFT+/25KN is a special version that uses gallium phosphate. This sensor version achieves twice the sensitivity (compared to quartz) and is especially suitable for measuring extremely small forces.


“I cannot calibrate, and space is a constraint in my application.”

Our recommendation: Type CFT force sensors

Like the CFT+, the CFT force sensors have been pre-stressed and calibrated, which makes them ready to use without prior calibration. They are mounted via thread connections and have standard mechanical connections.

Type CFT sensors are small and use gallium phosphate as well. They are ideal for applications in the range of a few Newtons such as the testing of miniature components.


“I want a sensor that can be easily integrated; however, my application requires a plug connection.” / “Point loads may occur.” / “I need to take into account very high forces.”

Our tip: Compact force washers of the CFW series

The height of construction of CFW force washers is slightly higher than with the CLP series, which means that there is more material between the force application part and the measuring element. The CFW/700 KN is the largest force washer of the series, with an internal diameter of 36 mm. As a result, it is less affected by unfavorable mounting conditions. Series CFW force washers come with a plug connection. Different cables can be connected such as the robust KAB145 charge cable, which features a connection to the sensor housing that is sealed with an O-ring. It is ideal for use in harsh environments!


“I need to measure force at extraordinarily high temperatures.”

Our recommendation: Force washers of the PACEline CHW series

The force washers of the CHW series have been designed for use at extremely high temperatures. The CHW-2 model can be used at temperatures of up to 200 degrees C, CHW-3 even at temperatures of up to 300 degrees C. These force washers, too, need to be calibrated. Their low temperature sensitivity allows calibration at room temperature.


“Space is a constraint in my application, the height of construction is the decisive factor."

Our tip: CLP miniature force washers

The CLP series is perfectly suited to such applications, because the sensors’ height of construction is only 3 to 5 mm, depending on the size of the force washer. Moreover, the sensors come with an integrated cable, since connectors cannot be accommodated due to the very low height of construction. Sensors are available for all thread sizes, from M3 to M14. The low height of construction requires that the force on the sensor surface be distributed as uniformly as possible.


Do you need to measure shear forces?

Our tip: CSW miniature force washers for shear forces

The CSW force washers measure forces that are applied in parallel to the force washer. The sensors have the same compact dimensions as the CLP series. The miniature force washers need to be calibrated to enable quantitative results to be determined.

Please note: A two-component force sensor can easily be built up using a CLP and a CSW sensor. Typical applications include machine monitoring in milling or turning processes.


“I cannot accommodate a force washer, and a sensor based on strain gauges also requires too much space.”

The right sensor: Piezoelectric strain transducers of the CST series

Strain transducers of the CST series are very small and can be fastened with a screw. They function according to the following principle: When force is applied to a structure, this results in a deformation (strain) which often is proportional to the applied force. The sensor measures strain. CST can be mounted, for example, onto welding guns or press tools. It reliably measures strain in these components. These transducers, too, need to be calibrated. Series CST strain transducers have a very high sensitivity and can thus, also be used with very stiff structures, i.e. with very low strain levels. The measurement accuracy depends particularly on the material onto which the sensor is mounted.



Author: Thomas Kleckers

Product Manager for force sensors at HBM

More technical articles on force measurement can be found in our Force Tips & Tricks

We will be happy to advise you

Do you have a specific application? Do you wonder whether a piezoelectric sensor is the right choice? Contact us - we look forward to discussing your projects with you.