Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All Test Data Management See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force sensors See All Load Cells See All Multi Component Sensors See All Pressure See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Data Acquisition & Analysis See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Smart Sensors See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance See All BKSV Worldwide Contacts

Main Menu

See All API See All Experimental Testing See All Piezoelectric Charge Accelerometers See All Piezoelectric CCLD (IEPE) accelerometers See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

The MTS3000 System: Hole-Drilling Method to determine Residual Stress

SINT, Italy


The strength behavior of components is influenced by their existing residual stresses that don't show any visible signs. Therefore, the aim is to determine the mechanical stresses in the components. With the hole-drilling method for determining residual stresses, a small hole of 1.6mm diameter is drilled into the workpiece, and strain gauges are used to measure the resulting strain. 

SINT Technology and HBK offer both the MTS3000 system and the required amplifier QuantumX which enable this process to be implemented easily. The system uses a stepping motor that allows drilling at 350,000 rpm. The strain changes arising due to the step-by-step drilling of the hole into the work piece will be detected by strain gauge rosettes specifically designed for this process. Signal processing is performed digitally.

In addition to system control functions, the software package comprises four different evaluation algorithms that enable the mechanical stresses to be computed from the measured strain. The entire measurement process is PC-controlled, ensuring a high degree of measurement reliability and optimum reproducibility.


The reprocessing software allows the residual stresses in the material to be calculated from the measured strains. The choice of back calculation method is very important in producing the most accurate representation of the real stress state. Many researchers have contributed, and continue to contribute, to the extensive literature describing the hole drilling method. Currently, four different back calculation methods exist in the reprocessing software: the Uniform Stress Method according to ASTM E837-13 standard, the Non-Uniform Method according to ASTM E837-01 standard, the Schwarz- Kockelmann’s Method and the Integral Method.

This method, described in the ASTM E 837-01 standard, is based on the assumption that stresses do not vary with distance from the specimen’s surface. For this reason, the method does not consider spatial resolution. Nevertheless, when measured residual stresses are close to uniform stress field, this is the best method to choose, because it is the least sensitive to the effects of test errors. It provides also a fast estimate of the average residual stress level into the specimen; that’s why this type of calculation is universally used and accepted.

This method, described in the ASTM E 837-13 standard, introduces the computation of non-uniform stresses. Calculation steps and depth are fixed by this standard, and the calculation process refers to the Integral Method (see below for further details) with Tikhonov regularization to reduce the random errors in the calculated stresses. The ASTM E 837-13 is the only complete standard on residual stresses available at world level.

Kockelmann’s method is based on the theory that there is a correlation function between the strain derivative and the stress distribution, expressed as a function of the hole’s depth. The bond is formed by a pair of coefficients (Kx and Ky), calculated on a simulation model, that relate stress and strain. From these stress values it is possible to calculate the principal stresses and angle by using Mohr’s Circle.

This method, proposed by G. S. Schajer, provides a separate residual stress analysis at every hole-drilling depth increment. In this method, the contributions to the total measured strain relaxations of the stresses at all depths are considered simultaneously giving a higher spatial resolution than the other methods.

To simplify the problem of residual stress evaluation, Schajer proposed that the stress field could be described by means of step-wise functions whose value is constant through the partial hole depths. Using this hypothesis, Schajer established the numerical coefficients that are used for the calculation. The maximum depth that the method can be used for is 0.5 times the mean radius of the strain rosette used for the test.

The integral method should be chosen when residual stresses are expected to vary significantly with depth; however, it also has the highest sensitivity to test errors.

As a leading company in measurement and testing, the mission of SINT Technology is to offer tailor-made solutions to its customers.

When flexibility is needed, we provide support to companies operating worldwide in several industrial sectors, ensuring quality of services, fast response and the expertise of our technicians.

SINT Technology is a trusted partner and a centre of excellence recognized by the Italian Accreditation Body ACCREDIA.

Continuous improvement in research and innovation make our solutions the state of the art in experimental testing and in the production of measurement  systems.

Technology used

Other case studies