arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Handheld Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration Transducers See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Upcoming Webinars See All Acoustics See All Asset & Process Monitoring See All Durability & Fatigue See All Electric Power Testing See All NVH See All Custom Sensors See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management See All Business Ethics

Event Analysis - Planning a Retirement Strategy

In planning for your retirement, you normally invest a percentage of your income in "safe investments" (Bank) or in "riskier investments" (Stock Market). For this example, assume that you are choosing to invest some of your money in the bank and some in the stock market, and let’s say that NASDAQ is tied to the NASDAQ Composite Index.

In this example, ReliaSoft Weibull++ software is used to analyze data on average bank interest rates and NASDAQ annual returns to obtain the distributions and parameters used in the Event Analysis flowcharts created in BlockSim.

The interest from the bank investment follows a generalized gamma distribution with mean = 1.7406, standard deviation = 0.1141 and lambda = 4.3106.

The profit from the NASDAQ investment follows a normal distribution with mean = 13 and standard deviation = 28.

Note that you can use the Weibull++ software to analyze data on average bank interest rates and NASDAQ annual returns to obtain the distribution and parameters for this analysis, as illustrated in the figures below.
 

Using ReliaSoft Weibull++ software to analyze data on average bank interest rates and NASDAQ annual returns to obtain the distribution and parameters for BlockSim's Event Analysis module analysis

You will invest X% of your income per year for the next Y years. Assume that your current income is $40,000 per year and, based on past history, your income will increase yearly by a percentage that is normally distributed with mean = 4 and standard deviation = 1.5.

 

You will put Z% of your investment money in the bank for the first year and the remainder in NASDAQ. Given the volatility of NASDAQ, the following strategy is applied for subsequent years:

 

  • Any profits made in the stock market at the end of each year will be transferred into the savings account for safe keeping. Thus, the amount invested in NASDAQ will be restricted to the initial amount put in plus annual contributions and minus any losses.
  • The amount invested in NASDAQ will not increase as your income increases every year. It will always be equal to the first year investment.

Objectives

 

  • Estimate your investment income over the next 20 years if you invest 5% of your yearly income with 50% going to savings.
  • Compare your investment income after 20 years, varying the investment portion from 0% to 20% of your yearly income (with 50% going to savings).
  • Compare your investment income after 20 years, varying the investment portion from 0% to 20% of your yearly income and varying the amount invested in savings from 0% to 100%.

Define the resources

 

Define models to describe the stock profit, bank interest and the yearly increase in your income, as shown next.

Note that even though the investments are measured in money, the Model Unit has been set to Hours. This is because event analysis flowchart results are always given in terms of the system base unit (SBU), and resources that require you to define a unit (i.e., models) will have their values automatically converted to base units during simulation. Therefore, whenever you don't want the software to convert the value obtained from a model resource, simply make sure the model uses a unit that is defined as equal to 1 SBU. See the application help file for more information.

 

For this example, whenever one of the models returns a value as "X hours," it should be read as "X dollars." If the model unit you are using is not equal to 1 SBU (choose File > Manage Database > Unit Settings to confirm), you will need to change the model units before resimulating the flowchart.

 

Define the following variables:

  • A variable to represent your yearly income (CurrentSalary)
  • Three variables to represent the percentage invested in the bank (StocksPercent), the percentage of income invested (InvestmentPercent), and the number of years to be analyzed (Years). These variables will be varied during simulation.
  • Five other variables that will be used to keep track of the values that are passed during simulation.

Define event analysis static functions to calculate the following:

  • The amount of money that will be invested (Current_Investment).
  • The amount that will invested in the bank each year (Savings_Portion).
  • The threshold (Savings_Threshold) that will be used to determine whether you earned money in the stock market during a given year (and will therefore move those earnings into the bank account).

Build the flowchart

 

Construct the flowchart shown below.

In order to keep track of how the investment incomes accumulate over the years, this flowchart is looped through. The loop is created by using the following blocks:

 

  • A flag marker called "Start" to mark the start of the loop.
  • A reset block called "Reset" to force the flowchart to generate new values for the event analysis static functions at the start of every loop.
  • A counter block called "Years" to count the number of years.
  • A conditional block to check whether the number of years is less than the specified number. If the condition is met, the investment strategy will be applied (i.e., profits made in the stock market are transferred to the bank account). The go-to-flag block will then direct the flow of execution back to the flag marker and close the loop.

If the condition is not met (the number of years is up), then the value of the investments is calculated and then stored in the result storage block called "Total."

Simulation

 

Estimate your investment income over the next 20 years if you invest 5% of your yearly income with 50% going to savings.

 

First, make sure that the initial value of the InvestmentPercent variable is 5 and the initial value of the StockPercent variable is 50.

 

On the General Settings page of the Flowchart Simulation window, specify 100 simulations and a seed of 1 for repeatability, as shown next.

On the Sensitivity Analysis page, specify to vary the number of years from 1 to 20, and use an increment of 1.

When the simulation completes, close the Flowchart Simulation window and then click the Plot icon on the diagram’s control panel. The results are displayed in the following plot with the plot scaling adjusted to Y = 0 to 120,000 and X = 0 to 25.

Compare your investment income after 20 years, varying the investment portion from 0% to 20% of your yearly income.

 

To vary the investment portion, configure the Sensitivity Analysis page as follows and repeat the simulation.

The results are displayed in the following plot.

Compare your investment income after 20 years, varying the investment portion from 0% to 20% of your yearly income and varying the amount invested in savings from 0% to 100%.

 

To vary both the investment portion and the savings portion, configure the Sensitivity Analysis page as follows and repeat the simulation.

To view the results in a three-dimensional plot, click the 3D Plot icon on the control panel. The following plot shows the results.