arrow_back_ios

Main Menu

See All Software See All Instruments See All Transducers See All Vibration Testing Equipment See All Electroacoustics See All Acoustic End-of-Line Test Systems See All Academy See All Resource Center See All Applications See All Industries See All Services See All Support See All Our Business See All Our History See All Global Presence
arrow_back_ios

Main Menu

See All Analysis & Simulation Software See All DAQ Software See All Drivers & API See All Utility See All Vibration Control See All High Precision and Calibration Systems See All DAQ Systems See All S&V Hand-held Devices See All Industrial Electronics See All Power Analyzer See All S&V Signal Conditioner See All Acoustic Transducers See All Current and Voltage Sensors See All Displacement Sensors See All Force Sensors See All Load Cells See All Multi Component Sensors See All Pressure Sensors See All Strain Sensors See All Strain Gauges See All Temperature Sensors See All Tilt Sensors See All Torque Sensors See All Vibration See All Accessories for Vibration Testing Equipment See All Vibration Controllers See All Measurement Exciters See All Modal Exciters See All Power Amplifiers See All LDS Shaker Systems See All Test Solutions See All Actuators See All Combustion Engines See All Durability See All eDrive See All Production Testing Sensors See All Transmission & Gearboxes See All Turbo Charger See All Training Courses See All Acoustics See All Asset & Process Monitoring See All Custom Sensors See All Durability & Fatigue See All Electric Power Testing See All NVH See All Reliability See All Vibration See All Weighing See All Automotive & Ground Transportation See All Calibration See All Installation, Maintenance & Repair See All Support Brüel & Kjær See All Release Notes See All Compliance
arrow_back_ios

Main Menu

See All nCode - Durability and Fatigue Analysis See All ReliaSoft - Reliability Analysis and Management See All API See All Experimental Testing See All Electroacoustics See All Noise Source Identification See All Environmental Noise See All Sound Power and Sound Pressure See All Noise Certification See All Industrial Process Control See All Structural Health Monitoring See All Electrical Devices Testing See All Electrical Systems Testing See All Grid Testing See All High-Voltage Testing See All Vibration Testing with Electrodynamic Shakers See All Structural Dynamics See All Machine Analysis and Diagnostics See All Dynamic Weighing See All Vehicle Electrification See All Calibration Services for Transducers See All Calibration Services for Handheld Instruments See All Calibration Services for Instruments & DAQ See All On-Site Calibration See All Resources See All Software License Management

New Analysis Capabilities for Fatigue Life of Welded Components

Welding is often necessary in product design and production, but it can lead to susceptibility to fatigue cracking.  Predicting the fatigue life of welded components is therefore critical to ensuring product durability requirements are met. 

 

A number of analytical approaches have been used predict to weld durability.  These existing methods may struggle to accurately predict fatigue life in some cases.  This is particularly true in cases of complicated weldments and advanced materials that have become more prevalent in the current lightweighting environment.  In some weldments, cracks may initiate but grow very slowly – or not at all – depending on how the weld is designed.  Understanding the total life of the weld becomes very important to ensuring product durability.

The WholeLife fatigue method in nCode DesignLife addresses this analysis gap, bringing powerful new analysis capabilities for a more accurate prediction of weld fatigue life that results in improved product durability, reduced overdesign, and lower weight and cost.  WholeLife uses an integrated approach to model fatigue over the entire lifetime of the component – from very early stages of crack initiation to macroscopic crack growth and final fraction – to give a more accurate determination of weld life.  This combined approach of crack initiation and crack growth overcomes limitations and assumptions that are inherent in adopting either of these approaches separately.

SAE International’s Fatigue Design and Evaluation (FD&E) committee have evaluated and validated this ‘total-life’ approach as part of a multi-year research project involving a team of industry-wide durability experts, including HBM Prenscia. Results of this new total-life method detailing our involvement in this FD&E total life project were discussed at the M200 session of the 2019 WCX: World Congress Experience.

We also shared a presentation describing how this total-life method has been implemented in nCode, including descriptions of the required inputs for FE modeling, material properties, residual stresses, and applied loading. 

Ready to achieve success through failure prediction?