arrow_back_ios

Main Menu

See All 분석 및 시뮬레이션 소프트웨어 See All DAQ 소프트웨어 See All 드라이버 및 API See All 유틸리티 See All 진동 제어 See All 고정밀 및 보정 시스템 See All DAQ 시스템 See All S&V 핸드헬드 장치 See All 산업용 전자 제품 See All 전력 분석기 See All S&V 시그널 컨디셔너 See All 음향 트랜스듀서 See All 전류 및 전압 센서 See All 변위 센서 See All 힘 센서 See All 로드셀 See All 멀티 컴포넌트 센서 See All 압력 센서 See All 스트레인 센서 See All 스트레인 게이지 See All 온도 센서 See All 기울기 센서 See All 토크 센서 See All 진동 트랜스듀서 See All 진동 테스트 장비용 액세서리 See All 진동 컨트롤러 See All 측정 여기기 See All 모달 익사이터 See All 파워 앰프 See All LDS 셰이커 시스템 See All 테스트 솔루션 See All 액추에이터 See All 내연 엔진 See All 내구성 See All eDrive See All 생산 테스트 센서 See All 변속기 및 기어박스 See All 터보 충전기

Accelerated Life Testing - Demonstrating the B10 Life

The accelerating stress for an electronic component is temperature. To meet the specified reliability requirement, the manufacturer is required to demonstrate with 90% confidence that 90% of the units will continue to operate for 1,000 hours under normal use conditions of 300 K. To save time and money, the manufacturer develops an accelerated life test designed to provide the desired reliability results in a shorter period of time than would be possible with a test performed under normal stress conditions.

Experiment and data

 

A sample of units are put to an accelerated life test with three different stress levels: 353 K, 373 K and 393 K. The failure times obtained during this test are presented in the table shown next.

This information can be used to determine the following:
a) What is the activation energy?
b) Is the B10 life of 1,000 hours at a 90% lower 1-sided confidence for the use stress level (300 K) demonstrated by the test?
c) Plot the acceleration factor vs. stress for this accelerated life test.
d) Assuming that 1,000 units will be sold each month, determine the expected number of failures over the next six months so that an appropriate stock of spare parts can be kept on hand.

Analysis

 

Step 1: Using Accelerated Life Testing or Accelerated Life Testing (PRO), the analyst creates a standard folio for failure and suspension times with one stress column for temperature (in kelvins, K), with a use stress level of 300 K. The data set is analyzed in Weibull++ using a combination of the Arrhenius model and the Weibull distribution. The results show an activation energy (Ea) = 0.465299, as shown next.

Figure 1: Calculated results from the simple accelerated demonstration test

Step 2: Once the parameters have been calculated, a variety of plots, results and reports can be obtained.

 

B10 Life: The QCP can be used to calculate the B10 life with the specified confidence bounds, as shown next.

Figure 2: The calculated B10 life with 90% lower one-sided confidence bounds

The B10 life demonstrated at the 90% lower 1-sided confidence is found to be 1,161 hours, well above the required 1,000 hours. You can also confirm that the product meets the target metric by marking the B10 target on a probability plot, as shown next (with the scaling adjusted to Y= 1 to 99 and X= 100 to 10,000).

Figure 3: Determining the B10 life demonstrated by the test from the use level Weibull probability plot

An Acceleration Factor vs. Stress plot is shown next (with the scaling adjusted to Y= 0 to 80 and X= 200 to 400).

Figure 4: Acceleration Factor vs. Stress plot for the accelerated demonstration test data analysis

Expected Number of Failures: The analyst creates a ReliaSoft Workbook report using the data from the calculated standard folio and based on the "ALTA Warranty Forecast Template".

Figure 5: Setting up a new ReliaSoft Workbook

Then the following inputs are entered into the spreadsheet module of the ReliaSoft Workbook:

  • Use Stress Level: 300
  • Time Increment: 720 (24 hours/day * 30 days/month = 720 hours/month)
  • Future Sales (in the Warranty Returns Forecasts area) for Periods 1-5: 1,000


The final report is shown next.

Figure 6: Report using the data from the calculated standard folio and based on the "ALTA Warranty Forecast Template"