arrow_back_ios

Main Menu

See All 软件 See All 仪表 See All 传感器 See All 振动测试设备 See All 电声 See All 声学生产下线检测系统 See All 应用 See All 行业 See All 服务 See All 支持 See All 全球业务
arrow_back_ios

Main Menu

See All 可靠性 See All 数据采集软件 See All 驱动程序和API See All 公用程序 See All 振动控制 See All 高精度和校准系统 See All 数据采集系统 See All 手持式声级和振动测量 See All 工业仪表 See All 功率分析仪 See All 信号适调器 See All 声学传感器 See All 电流和电压传感器 See All 位移传感器 See All 力传感器 | 测力传感器 See All 称重传感器 See All 多分量传感器 See All 压力传感器 See All 应变传感器 See All 应变片 See All 温度传感器 See All 倾角传感器 See All 扭矩传感器 See All 振动传感器 See All 振动控制器 See All 测量激振器 See All 模态激振器 See All 功率放大器 See All LDS振动台系统 See All 振动测试设备附件 See All 测试解决方案 See All 执行器 See All 内燃机 See All 耐用性 See All 电驱动 See All 生产测试传感器 See All 变速器和齿轮箱 See All 涡轮增压器 See All 声学 See All 基础结构和过程监控 See All 电功率 See All NVH See All OEM定制传感器 See All 结构完整性 See All 振动 See All 汽车和地面运输 See All 校准 See All 现场安装、维护和修理 See All Brüel & Kjær 技术支持
arrow_back_ios

Main Menu

See All API See All 电声学 See All 环境噪声 See All 噪声源识别 See All 产品噪声 See All 声功率和声压 See All 车辆通过噪声 See All 生产测试和质量保证 See All 机器分析和诊断 See All 结构健康监测 See All 电池测试 See All 瞬时测量电力的介绍 See All 变压器等效电路图 | HBM See All 农业行业的OEM传感器 See All 用于机器人和扭矩应用的OEM传感器 See All 结构动力学 See All 材料性能测试 See All 传感器校准服务 See All 手持设备校准 See All 仪表和DAQ 校准 See All 资源 See All 软件许可管理

注册完成

谢谢你的注册。

测量变压器的参数 等效电路图

Used in many different applications, the transformer is one of the most important components in alternating current technology. It is used in electrical energy technology to transform between different voltage levels. To ensure efficient transmission of energy in this case, good efficiency and optimum utilization are required.

Despite the wide prevalence of power electronic circuits, the transformer is also still required for small power supplies to allow for the required galvanic isolation. It is used in measurement technology to convert measured quantities. Transformers must meet different requirements depending on the intended use. Adaptations to these requirements can be made through the selection of the core material that is used and by varying the geometry of the core. The individual properties of a transformer can be represented by a simple equivalent circuit diagram. This can be used to evaluate how suitable a transformer is for a proposed application and its behavior at various load points. In this article the equivalent circuit diagram of the transformer is first derived and explained. Next measurements and calculation methods for determining the equivalent circuit diagram and the loss of iron in the transformer core are presented. The measurements and calculations are performed with the HBM Gen3i data recorder. The appendix contains all the necessary formulas and they can be imported into Perception.
white paper book
下载PDF格式的白皮书

1. Equivalent circuit diagram of the transformer


Figure 1 shows the operating principle of a transformer with two windings that are magnetically connected with a ferrite core. Due to the high permeability of the ferrite core in comparison to the air, the flux is directed through it. Nonetheless, slight leakage fluxes  and  do occur. Resistances  and simulate the ohmic part of the windings. To describe the operating behavior of the transformer, an equivalent circuit diagram is derived from this model as shown in Figure 2. This diagram shows the transmission ratio between the primary and secondary side for an ideal transformer. The other effects that occur are represented by passive components. The magnetic fluxes are described by the leakage inductances  and, and also by the main inductance. The resistor is connected in parallel to the main inductance and serves to simulate the iron losses in the core material. These consist of eddy current losses and hysteresis losses. null
null
Eddy current losses arise due to a current flow in the ferrite core which is caused by induced voltages. In accordance with Lenz's law, this current opposes the change that caused it. To minimize the current flow, the ferrite core is made up of plates that are isolated from each other. The hysteresis losses are caused by the periodic remagnetization of the ferrite core, since energy is required to align the molecular magnets in the iron (Weiss domains). Since both the main inductance Lµ and the iron loss resistance RFe are dependent on the core material with non-linear permeability µFe, both follow a non-linear course. R= R+ R2 ü²     (1)

L= L1σ + L ü²   (2) The leakage inductances may be considered as linear, since their field lines run primarily through the air, which exhibits constant permeability. For further considerations the equivalent circuit diagram from Figure 2 is simplified still further (Figure 3). The voltage drop on R1 and L is negligibly small in comparison to the voltage drop due to the iron loss resistance RFe and the main inductance Lµ in normal operation. This makes it possible to contact the iron loss resistance RFe and main inductance Lµ directly with the input terminals. [1] In equations (1) and (2) the ohmic resistance R2 and the leakage inductance L of the secondary side are converted to the primary side and combined to form RK and LK. The measurements and calculations performed below refer to the equivalent circuit diagram simplified in this manner. Quantities I'2, U'2 and Z' load have been converted from the secondary side to the primary side taking into consideration the transmission ratio.
null
null

2. Measurements in no-load


The values of the iron loss resistance RFe and main inductance Lµ can be determined by a no-load test as shown in Figure 4. Since these values exhibit non-linear behavior, the unloaded transformer is supplied with a variable transformer as a sinusoidal voltage source with variable amplitude. This makes it possible to approach and measure different load points with differently linked magnetic flux Ψ. The magnetic flux is calculated from the applied voltage as follows: Ψ = ∫▒ u ̂⋅ sin(2πft)dt     (3)
Ψ = -u ̂/2πf ⋅ cos(2πft)    (4) The metrologically acquired quantities are the primary voltage u1 (t), primary current i1 (t) and secondary voltage u2 (t). To determine the iron loss resistance RFe and main inductance Lµ, first the root mean square value of the primary voltage U1, the primary-side active power P1 and the reactive power Q1 are determined. The calculations are performed on a cyclical basis. The component values and transmission ratio ü can be calculated with formulas (5) (6) and (7). RFe = U12/P1                        (5)

Lµ = 1/(2 π f) ⋅ (U1²/Q1)    (6)

ü = U1/U2                             (7) As can be seen in Figure 5, the component values are not constant due to dependence on the magnetic flux. The calculated component values are an average over a sine wave.
null
null
The measured values are examined over the course of time to allow for further examination. The distortion of the current over time (red curve) is clearly seen in Figure 6. The core material runs into saturation. The correlation between the flux density B and the magnetic field strength H is illustrated most vividly by the hysteresis curve. If the core geometry is known, the flux density and field strength can be determined from the measured quantities with: B = Ψ/AFe        (8) H = I/lFe          (9) Due to the unknown core geometry of the test specimen measured here, the hysteresis curve is realized in Figure 7 as a ΨI characteristic curve. The new curve and a number of load points are also shown in Figure 8. The new curve is determined by approaching different load points in which the linked flux and current are acquired in the voltage zero crossing. It is produced when a field strength is first applied to an unmagnetized core and is the characteristic curve of the main inductance Lµ. The flux density increases slowly at first. As the field strength increases, the flux density increases faster and faster until the core goes into saturation and the flux density hardly rises at all. Now if the field strength is reduced, the flux density does not return on the new curve. Instead it follows the hysteresis curve. When the field strength is equal to zero a residual magnetism remains, referred to as remanence. The field strength required to eliminate the residual magnetism is called the coercive field strength. [2]
null
Another method for determining the expected iron losses is the Steinmetz formula (10). PFe = k ⋅ f⋅ Ψ          (10) The Steinmetz formula is based on the fact that the surface enclosed by the hysteresis curve is equal to the iron losses. The precondition for applying the Steinmetz formula is a sinusoidal input voltage. The iron losses for differently linked flux calculated from the measured values can be used to determine the unknown coefficients a and b from formula (10) by curve fitting (Figure 9). The curve produced in this manner can then be used to estimate iron losses for other load points in advance.

3. Measurements in the short circuit


In the short-circuit test the secondary side is short-circuited by a low-ohm impedance Zload (Figure 11). The current is set to the nominal (rated) current by a variable transformer.
null
null
null
null
The current through the main inductance and iron loss resistance is negligible in this operating state. The quantities acquired metrologically are the primary voltage u1 (t), primary current i1 (t), secondary current i2 (t) and the voltage u2 (t) over the load. First the voltage drop is calculated with RK and LK. uK (t) = u1 (t) - ((u2 (t))/ü)         (11) Then uK (t) and i'2 (t) can be used to calculate the power transformed on RK and LK and the component values can be calculated. R= P/ I'22     (12)
L= 1/2π f ⋅ (Q/ I'2²)    (13)

4.资料来源

[1] J. Teigelkötter, Energieeffiziente elektrische Antriebe, Springer Vieweg Verlag, 2013.[2] M. S.Hering, Physik für Ingenieure (9.Auflage), Berlin, Heidelberg, New York:Springer, 2004.

相关产品和内容