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FOREWORD

In the years since the First and Second Editions of this book were published a
great many developments have occurred; in particular there has been a huge
swing from analog to digital analysis techniques, even for day-to-day analysis.
The main reason for this development has been the increase in power and
reduction in cost of FFT (Fast Fourier Transform) analyzers, but digital filters
have also increasingly taken over some of the application areas formerly
covered by analog filters.

At the same time it has been realised that the primary distinction is not
between digital and analog analysis, but rather between the FFT process, where
the signal is analyzed in blocks, and analysis using filters, where the signal is
processed continuously. Digital filters are a special case of the latter, but
otherwise have very similar properties to analog filters. For this reason the
layout of the book has been modified considerably, with digital filters generally
being treated along with analog filters, and FFT techniques treated separately.

The basic theory has been expanded to include a discussion of the Hilbert
transform, and in particular how a model of frequency analysis, based on an
analytic signal, relates to the model promulgated earlier, which is based on a
sum of positive and negative frequency phasors. In particular in the case of
modulated signals (involving amplitude, phase and frequency modulation) the
approach using an analytic signal is useful, because its amplitude represents
the amplitude modulation signal (plus DC offset) while its phase represents the
phase (or frequency) modulation signal superimposed on the carrier compo-
nent.

The analysis of stationary signals, using filters and FFT techniques, respec-
tively, is treated in Chapters 3 and 4. Despite rearrangement, much of the
material is similar to that in the earlier editions, although the discussion of FFT
techniques has been expanded somewhat. At the same time, obsolete material
on “Time Compression” and “High Speed” analysis has been reduced consid-
erably, or dropped.



Similarly, Chapter 5, on the analysis of short transients, contains much
material from the earlier editions, in particular with respect to analog analysis,
but the section on FFT techniques has been expanded considerably, in line with
the overwhelming preponderance of these methods today.

The subject of Chapter 6, the analysis of more slowly varying non-stationary
signals, was treated very briefly in the earlier editions, but the treatment here
has been expanded greatly. Only FFT analysis is covered, as this is by far the
most practical way of applying the “time windows” involved. This chapter also
contains new material on “order tracking” where the sampling frequency of the
FFT analyzer is tied directly to machine shaft speed, and the x-axis becomes
one of harmonic order, rather than frequency.

Chapters 7 and 8 also represent considerable expansions of material treated
briefly in the earlier editions. Chapter 7 covers dual channel FFT analysis, while
Chapter 8 covers Cepstrum analysis. In the intervening years there have been
considerable developments in both fields, and for this reason there is some-
what more emphasis on examples of application in these two chapters com-
pared with earlier chapters.

Overall, it is hoped that the new arrangement will provide more direct access
to the somewhat larger body of material.

R.B. Randall
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1. INTRODUCTION

The object of frequency analysis is to break down a compiex signal into its
components at various frequencies, and it can be shown that this is possible for
all practical signals (Ref. 1.1). The word “components” can be interpreted in
several different ways, however, and it is important to clarify the differences
between them.

Mathematicians and theoretically inclined engineers tend to interpret “com-
ponents” as the results of a Fourier Analysis, while practical engineers often
think in terms of measurements made with filters tuned to different frequencies.
It is one of the purposes of this book to clarify the relationships between these
two approaches. Another is to give a simple pictorial interpretation of Fourier
analysis which greatly facilitates the understanding of fundamental relation-
ships, in particular the connection between mathematical theory and practical
analysis by both analog and digital means.

The approach taken is to consider frequency components as vectors (or
phasors) rotating in a complex plane rather than as sums of sines and/or
cosines. A typical (co-) sinusoidal component is represented initially as the sum
of two contrarotating vectors (representing positive and negative frequency,
respectively). This gives a meaning to the mathematically useful concept of
negative frequency, and a two-sided frequency domain gives a valuable sym-
metry with the time domain. It also allows for the simple pictorial representation
of Fourier analysis which is developed and used extensively in this book.

Later, in connection with a discussion of the Hilbert transform, an alternative
representation is developed, based on the projection on the real axis of a single
rotating vector. This gives a one-sided frequency spectrum, but results in a
complex time signal (analytic signal), whose real and imaginary components
are related by a Hilbert transform. This representation is very useful in the
analysis of modulated signals (amplitude, phase, and frequency modulation).

In both approaches a considerable simplification of the mathematics arises
from the fact that a vector (having two components e.g. amplitude and phase)
can be represented as a single complex variable and because differentiation
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and integration of such complex variables are so simple. It is assumed that the
reader is familiar with the basic relationships between complex exponentials
and sinusoids, but a brief résumé of the most important relationships is given at
the start of Chapter 2.

Chapter 2 continues with a discussion of Fourier analysis, first the various
forms taken by the Fourier transform, then the important practical consider-
ation of bandwidth. This leads into a discussion of the different types of signal
encountered in practice, and how they appear in spectral and other representa-
tions. Next, the very important subject of convolution is treated in some detail.
It is shown how the output of a linear physical system is obtained by convolving
the input signal with the impulse response of the system and how this rather
complicated operation transforms by the Fourier transform to a multiplication
(which in turn becomes an addition in the normal logarithmic representation of
spectra). Other applications of this so-called “Convolution Theorem” are also
given. The chapter closes with an introduction to the Hilbert transform, how it
can be calculated, and its application to the analysis of modulated signals.

Chapter 3 is entitled “Filter Analysis of Stationary Signals” and covers both
traditional analysis with analog filters and detectors, and analysis with digital
filters (and detectors) which have many similarities with their analog counter-
parts. The chapter starts with a discussion of the function and properties of the
basic elements of an analyzer based on filters, viz., the filter, the detector (for
measuring the power in the filter output signal) and the graphic recorder often
used to record the spectrum on paper. Any one of these elements can deter-
mine the speed with which the analysis can be made. The chapter goes on to
describe the various types of analyzers available, encompassing those based
on both analog and digital filters. Finally, the practical analysis of stationary
signals is discussed in detail, and formulae and procedures developed for the
optimum choice of analyzer and analysis parameters such as filter bandwidth,
averaging time, and recorder paper speed and writing speed. This is done for
stepped filter analysis (e.g. '/3-octave and '/1-octave filters), then sweeping
narrow-band filters, and finally for real-time analysis using digital filters. Cali-
bration of the results is also clarified. These procedures allow determination of
results with a known degree of accuracy in the shortest possible time.

Chapter 4 introduces another digital analysis method, the so-called Fast
Fourier Transform (FFT), which since its introduction in 1965 has revolutionized
signal analysis. It is first shown how the FFT procedure greatly speeds up the
calculation of the DFT (Discrete Fourier Transform) introduced in Chapter 2,
and how the results obtained using the DFT differ from those obtained by direct
Fourier transform. Precautions have to be taken to avoid problems with the
three “pitfalls” of the DFT, viz., “aliasing”, “leakage”, and the “picket fence
effect”. The principles of “Zoom” analysis are explained and compared for the
two major techniques used to obtain increased resolution in a limited frequency
band. Finally, procedures are given for the practical analysis of stationary

12



signals, including normal spectrum analysis, and analysis of demodulated sig-
nals obtained using Hilbert transform techniques. In Chapter 4 the discussion is
limited to simple spectrum analysis of a single channel signal, for direct com-
parison with the methods of the previous chapter. It is seen that the FFT is best
adapted to constant bandwidth analysis on a linear frequency scale.

Chapter 5 discusses the analysis of transient signals, firstly using FFT tech-
niques, and then using filters. Analysis using analog filters has now largely been
superseded by digital techniques (FFT and digital filters) but is included for the
sake of completeness. Even though many analyzers give results in RMS or
mean square (i.e. “power”) values, the conversion of the results to “energy
spectral density” (ESD), or “band energy level” is described for all analysis
techniques.

Chapter 6 covers the analysis of non-stationary signals such as speech, or
machine vibration signals obtained during run-ups and run-downs in speed. The
approach used employs time windows which are moved along the signal in
overlapping steps so that the signal in each window position is either quasi-
stationary, or an isolated event. The results are usually displayed in a 3-
dimensional spectral map, with time or shaft RPM as the third axis. For cyclic
signals, such as those from reciprocating machines, the third axis may be crank
angle (over 360° or 720°) and the possibility of averaging over several cycles is
explained. Order analysis (where the frequency axis is changed to one of
harmonic order) is also described. Because the analyzer sampling frequency is
then variable, being linked to shaft speed, problems may be encountered with
aliasing, and a range of measures to avoid this are described.

Chapter 7 is a brief introduction to multiple channel FFT analysis, where the
signals are analyzed two at a time. These techniques are usually employed to
determine the response properties of physical systems (e.g. structural, acousti-
cal, electrical systems) rather than from an interest in the signals themselves.
Dual channel analysis involves the calculation of a number of functions not
previously defined, viz., cross spectrum, coherence, and frequency response
functions, in the frequency domain, and autocorrelation, cross correlation, and
impulse response functions in the time domain. The definitions, properties,
calculation procedures and major applications of these functions are described
and illustrated with examples.

Chapter 8 is a discussion of Cepstrum analysis, which has been included
because it can readily be carried out in modern FFT analyzers, and because it
throws light on the material of earlier chapters, both with respect to signal
analysis, and system analysis. The cepstrum is the inverse Fourier transform of
a logarithmic spectrum and often extracts valuable information from the latter
in the same way that normal Fourier analysis extracts information from a time
signal. There are two types of cepstrum, the “power cepstrum” and the “com-
plex cepstrum”. The former is obtained from the power spectrum, while the
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latter is derived from a complex spectrum and involves both log amplitude and
phase information at each frequency. For this reason the process of calculating
the complex cepstrum is reversible back to a time signal. Some applications of
the cepstrum are based on its simple ability to detect periodic structures in the
spectrum (e.g. harmonics, sidebands and echoes); others are based on the fact
that source and transmission path effects, convolved together in the time
domain, are additive and often separable in the cepstrum, thus allowing decon-
volution by selective editing.

For the somewhat more novel topics of the later chapters, some examples of
applications have been given, but for simple frequency analysis not much has
been said about applications; it being assumed that a reader already had a
need for frequency analysis, and only required information on how to obtain the
results. Even so, it is perhaps desirable to give a brief survey of the major
reasons for the widespread use of frequency analysis.

Without a doubt the major reason is that many physical and biological
systems only respond to a limited range of frequencies. For example, the
human ear only perceives sound within the range 20 Hz — 20 kHz, while for
estimating the effects of “whole body vibration” the range is rather more
restricted (typically 1 — 80 Hz). Quite often physical systems, be they electrical
circuits or civil engineering structures, only have strong resonances or excita-
tions within a limited frequency range, and hence the study of their behaviour
when subjected to an external excitation can be restricted to this frequency
range, thus greatly simplifying the problem. As mentioned previously, the calcu-
lation of the response of a linear system reduces in the frequency domain to a
simple multiplcation. An input at a given frequency gives an output only at that
same frequency, and thus frequency analysis permits treating each frequency
individually without regard to what is happening at other frequencies.

Sometimes frequency analysis is used to make a picture clearer. Quite often
the “noisiness” of a signal is contained mainly in its phase spectrum, the power
spectrum being relatively stable, and quite often it is the power spectrum which
gives most information with respect to “average” effects.

The frequency content of a signal can often be used diagnostically; for
example in tracing the source of a noise problem to a particular machine, or of
a mechanical problem to a particular rotating component.

On the other hand it must be kept in mind that frequency analysis is not a
universal panacea. In enhancing periodic events it tends to smear out individual
ones; for example, one obtains information about toothmeshing frequencies in
a gearbox but tends to lose information about individual gear teeth.
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Even so, there are many problems where frequency analysis reigns supreme,
and it is hoped that the information in this book will help to avoid some of the
pitfalls which can be encountered, so that the data obtained by frequency
analysis are correct (or at least have a known degree of accuracy) before they
are applied to the solution of a practical problem.
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2. THEORETICAL FREQUENCY ANALYSIS

2.1. BASIC CONCEPTS
2.1.1. Complex Notation

As mentioned in the Introduction, the approach to Fourier analysis used here
is based on the representation of frequency components as rotating vectors
(strictly speaking, phasors), these in turn being represented mathematically as
complex exponentials. A short résumé is given here of some of the most
important relationships which will be used later in the text.

Fig. 2.1 represents a two-dimensional vector F in the so-called “complex
plane”. This has a “real” component a directed along the “Real Axis” and an
“imaginary” component jb directed along the “Imaginary Axis”. The vector as a
whole is represented as the sum of these, viz.:

F=a+jb (2.1)

Note that b alone, as a real number, would lie along the Real Axis, but that
multiplication by j has the effect of rotating it through 7/2 radians. Accordingly,
a further multiplication by j would result in a further rotation through 7/2 so that
the vector of length b would then lie along the negative Real Axis as shown in
Fig. 2.1. Hence, multiplication by j2 corresponds to a multiplication by —1 and j
can thus be interpreted as y=1.

Note that the complex plane shown here is turned through 90° as compared
with the conventional representation with the Real Axis horizontal. This is done
purely to simplify interpretation of the Real Axis as being in the plane of the
paper rather that at right angles to it in 3-dimensional diagrams (e.g. Fig. 2.4).

In many cases it is desirable to represent Fin terms of its amplitude | F£| and

phase angle f instead of its real and imaginary components, and from Fig. 2.1 it
can be seen that the relationships between these two sets of coordinates are:
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Real

F=a+jb F*=a—ijb
= |F| eif ; , ; = |Fle™10
b
IF1 g & ™0
Imag. <} B r
(= i*b)
i’b=—b

761196
Fig. 2.1. Complex notation for a 2-dimensional vector

a =|F| cosf

b =|F|sinf

|Fl =/a®+ b2 (22)

6 =tan’ (L)

a

From Equations (2.1) and (2.2) it follows that:

F=|F| (cosf + jsinf) (2.3)
and since it is well-known (Euler’s relation) that:

cosl + jsinf = el? (2.4)

the most concise way of representing F in terms of its amplitude and phase is

as the complex exponential

F=|Flel

(2.5)
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As a point of terminology, Fig.2.1 also illustrates what is meant by F*, the
“complex conjugate” of F. This is seen to be the mirror image of F around the
real axis. Thus, the real parts and amplitudes have the same sign while the
imaginary parts and phase angles have opposite sign. The absolute values of
the equivalent components are the same.

Normally in this book we will be considering uniformly rotating vectors, i.e.
vectors whose amplitude | F| is a constant and whose phase angle 0 is a
linearly varying function of time

ie. 0=wt+ ¢

where w is a constant angular frequency (in radians/s) and ¢ is the “initial”
phase angle at time zero.

Normally, the frequency will be expressed as circular frequency f in revolu-
tions/s (Hertz) rather than w in radians/s and thus

f=2rft+ ¢ (2.6)

It follows from the above that e/? is a unit vector (amplitude = 1) with angular
orientation ¢, and e’ (where  is as defined in (2.6)) is a unit vector rotating at
frequency f Hz and with angular orientation ¢ at time zero.

The more general case where | F| and  are variable functions of time is
discussed in Section 2.6.

Vector (i.e. phasor) multiplication is simplest when the vectors are expressed
in the form of Equation (2.5) and for two vectors F, (= | F, | e’y and F,
(=1 F, | e%)is obtained simply as:

Fy-Fo=|Fyl e/ |Fple/®
, (2.7)
= |F,| - |Fy| i1+ 02

i.e. the amplitude of the product is equal to the product of the two amplitudes
while the phase is equal to the sum of the phases.

In particular, multiplication by a fixed unit vector e’? has no effect on the
amplitude but adds ¢ to the phase angle (i.e. rotates the vector through an
angle ¢) while multiplication by the rotating unit vector e /2™ " causes a vector to
rotate at frequency f.
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2.1.2. Delta Functions?

Another mathematical concept of which considerable use will be made is the
Dirac delta function, also known as the “unit impulse”. A typical delta function,
located on an X-axis at x = x, may be represented as 0(x-Xx,). It has the
property that its value is zero everywhere except at x = x;, where its value is
infinite. It has the further property, however, that the result of integrating over
any range of the X-axis which includes X, is a unit area. It can be considered as
the limiting case of any pulse with unit area whose length is made infinitely
short at the same time as its height is made infinitely large, while retaining the
unit area. The unit delta function can be weighted by a scaling factor (with or
without physical dimensions) so that the result of integrating over it gives the
value of the weighting. The delta function provides a means of treating func-
tions which are infinitely narrowly localised on an axis at the same time as other
functions which are distributed along the axis. A typical case is that of a single
discrete frequency component which is to be represented in terms of its “power
spectral density” (see Section 2.2.5). Because of the infinitely narrow localisa-
tion of a discrete frequency component on a frequency axis, its spectral
density (power per unit frequency), will be infinitely high, but since it represents
a certain finite power, it can be considered as a delta function weighted by this
value of power.

2.2, FOURIER ANALYSIS

The mathematical basis of frequency analysis is the Fourier Transform which
takes different forms depending on the type of signal analyzed. All have in
common that the signal is assumed to be composed of a number (perhaps an
infinite number) of (co-)sinusoidal components at various frequencies, each
having a given amplitude and initial phase. A typical (co-)sinusoidal component
with amplitude A, initial phase ¢ and circular frequency f¥ is illustrated in
Fig. 2.2(a).

The representation of Fig. 2.2(a) has the disadvantage that both time and
phase angle are represented along the X-axis and can thus be easily confused.
Furthermore, the mathematically useful concept of negative frequency is either
meaningless or in any case unclear.

Fig. 2.2(b) illustrates another representation of the same sinusoidal compo-
nent, this time as the vector sum of two contra-rotating vectors, each with
amplitude A/2. One has initial phase angle ¢ and rotates with frequency f while
the other has initial phase —¢ and rotates with frequency —f. The concept of

¥ Ref. 1.1 contains a mathematically rigorous discussion of delta functions and their relationship to
Fourier Analysis

Sf= —17.— where T is the periodic time
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negative frequency now has the clear physical interpretation of indicating a
negative rate of change of phase angle, and is necessary in order to indicate
rotation in opposite directions.

Ampl. Real
1
Ti= n )

[ conds 1

Llrad.)

Vector sum
at time zero
i frequency frequency
f ~F
l / T \
| | A2 A2

© 1 = <1 ry ry

Time {seconds) Imag. a

Phase {radians) 2

761187

Fig. 2.2. (a) Typical sinusoidal component A cos (2«ft + ¢)
(b) Representation as sum of contra-rotating vectors

Fig. 2.2(b) represents the position of the vectors at time zero, but it can be
seen that as they rotate with time, the vector sum will always be real (the
imaginary parts cancel out) and will trace out the sinusoidal curve illustrated in
Fig. 2.2(a).

The equivalence of the two forms is contained in the mathematical identity:

Acos 0 = g(ew + e /%) (2.8)

where 0 = 2wft + ¢) as in Equation (2.6)

2.2.1. Fourier Series

The application of this to Fourier analysis can be understood by considering
the case of Fourier series expansion of a periodic function.

If g(t) is a periodic function i.e.

g(t)=g(t+ hT) (2.9)
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where T is the periodic time
and nis any integer

then it can be shown (Ref. 2.1) that it can be represented as a sum of sinusoidal
components (or equivalently rotating vectors) at equally spaced frequencies kf,
where f, (= 1/T) is the reciprocal of the periodic time and k is an integer
(including zero and negative integers). The k th component is obtained from the
integral

T2 .
ity =+ [ g(tye-szmiat (2.10)

where f,= kf,
(i.e. the k th harmonic of f,)

It is worthwhile examining in detail what this integral achieves. If the signal
g(t) contains a component rotating at a frequency of f,, then multiplication by
the unit vector e 72/« (which rotates at - £,) annuls the rotation of the signal
component such that it integrates with time to a finite value. (Fig. 2.3(a)).

All qomponents at other frequencies will still rotate even after multiplication
by e”?" and will thus integrate to zero over the periodic time. (Fig. 2.3(b)).

It is of interest here that the effect of multiplying the signal by e”2"« is in
fact to shift the frequency origin to frequency f, and thus all the original
harmonics will still be harmonics of the modified time signal.

Thus Equation (2.10) has the effect of extracting from g(t) the components it
contains which rotate at each frequency f,. At the same time, as illustrated in

Real
Real

P

Imag. <3 {mag.

761185

Fig. 2.3. (a) Integration of a non-rotating vector to a finite value
(b) Integration of a rotating vector to zero
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Fig. 2.3(a) it “freezes” the phase angle of each as that existing at time zero
(when e~ 2™ = 1), The actual position of each vector at any other time t can
thus be obtained by multiplying its initial value G(f,) by the oppositely rotating
unit vector /2™ and the total signal g(t) will thus be the (vector) sum of all
these vectors in their instantaneous positions, i.e.

glty= 3, Glfyel2miut (2.11)

k=-o0

The series of (complex) values G(f,) are known as the spectrum components
of g(t) and since there is an amplitude and phase (or equivalently real and
imaginary part) associated with each one, a full representation requires three
dimensions. Fig. 2.4 illustrates such a 3-dimensional representation of a typical
spectrum.

Real

Ry +11, = IF,l o

imag.

761193

Fig. 2.4. 3-dimensional representation of the spectrum of a periodic function

Several important remarks can be made at this stage. One is that a signal
which is periodic in the time domain has a spectrum which is discrete and in
which all components fall at frequencies which are integral multiples of the
fundamental frequency f,. The reason for this can easily be understood. The
time for one rotation of the vector at the fundamental frequency f, corresponds
to one period time T. Since all the other vectors rotate at speeds which are
integer mutiples of f, they will all rotate an integer number of turns during this
time and will all have returned to their starting positions. Thus, after time T the
whole process will begin to repeat itself exactly and the function will clearly be
periodic with period T.
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Another important observation is that if the function g(t) is real-valued (as it
generally will be in the case of physical signals) then each component at
frequency f, must be matched by a component at —f, which has equal amplitude
but opposite phase (or equivalently equal real part and opposite imaginary
part). In this way the imaginary parts at all frequencies will always cancel and
the resultant will always be real. This is obvious for the single sinusoidal
component of Fig. 2.2 and applies to each component in the more general case.
Mathematically, it can be said that the spectrum of a real-valued function is
“conjugate even” i.e.

G(f,) = G*(—fy) (2.12)

where G* is the complex conjugate of G.

One immediate result of this is that since the series of imaginary parts (or
equivalently phase angles) is antisymmetric around zero frequency, then the
zero frequency (or DC) component has zero (or + 7) phase angle and is always
real, which is intuitively obvious. Fig. 2.4 has been drawn to represent such a
conjugate even spectrum.

A very important relationship concerns the distribution with frequency of the
power content of the signal. The instantaneous power § of the time signal g(t)
is equal to [g(t)]> and the mean power over one period (and thus over any
number of periods) is given by integrating the instantaneous value over one
period and dividing by the periodic time.

,
Thus, Poown =+ [ {a(t1} 2t 2.13)

For the typical sinusoidal component A,cos (2 7ft + ¢,) this results in

T
Pmean = %,’;Akz 0032(2 7rfkt+ ¢k) dt

CAZ T

=5 | 5 -7 cos2@mht+ o) dt
_AS

=72

since the sinusoidal part integrates to zero over the two periods of frequency
2 f, within time T.

This is the well-known result for the mean square value of a sinusoid of peak
amplitude A, and results in a root mean square (RMS) value of AdV2 (i.e.
0,707 A,).

§ The word “power” is here used in the sense of a squared variable (independent of the units of that
variable) and is thus only related to physical power by a dimensioned scaling constant

23



amplitude 2

(a) 2-sided power spectrum

- tlfk’/i

V1]

fi f
amplitude2
2
Ak
2
{b) 1-sided power spectrum
A2 |
.
0 fi T
amplitude
Ak
V2
(c) RMS amplitude spectrum
A
0 e O
Ak
20 logyg {E—/Aref
re A l

(d) dB spectrum

20 log,q ‘AO/AM i

=10 log,q [Ag/A,Zef

|

=10 logyq

2
i/A
2

2
ref

o

0

fi

761184

24
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It will be found that the power content. at each frequency is given directly by
the square of the amplitude of the Fourier series component. We have seen
(Fig. 2.2) that except for the DC component the amplitude of G(f,) is A./2,
where A, is the peak amplitude of the kth sinusoid, and thus the square of this
is AZ/4. Since the amplitude spectrum is even, the negative frequency compo-
nent (from G(-f,)) will also be AZ/4, and thus the total power associated with
frequency f, will be A2/2, the same as obtained in the time domain. The total
power can thus be obtained either by integrating the squared instantaneous
signal amplitude with time (and dividing by this time) or by summing the
squared amplitudes of all the frequency components. This is one manifestation
of the so-called “Parseval’s Theorem” (Ref. 2.1).

The spectrum of squared amplitudes (all real) is known as the “power spec-
trum”, and this is often the most useful part of the whole spectrum. However,
since the initial phase information is lost, it is not possible to resynthesize the
original time signal from the power spectrum.

Fig. 2.5(a) illustrates the 2-sided power spectrum corresponding to Fig. 2.4,
and Fig. 2.5(b) the 1-sided power spectrum obtained by adding the negative
frequency components to their positive counterparts (thus doubling them). This
is the normal representation of the power spectrum and that corresponding to
measurements with practical filters, since the latter pass positive and negative
frequency contributions equally. Fig. 2.5(c) shows the spectrum of RMS values
(the square roots of the values in 2.5(b)) while Fig. 2.5(d) shows the dB ampli-
tude spectrum, which is defined alternatively as 10log,, (Mean square) or
20log,o (RMS) which of course gives the same result in a particular case. The
values inside the brackets must be ratios with respect to a specified reference
level. Note that the DC component is the same in both the 1-sided and 2-sided
representations, since the total power at zero frequency is contained in this one
component.

2.2.2, Fourier Transform

All the above results apply to periodic signals but it is possible to extend
Equation (2.10) to a more general case by letting T— oo, in which case the
spacing 1/ T between the harmonics tends to zero and G(f) becomes a continu-
ous function of f. It can be shown (Ref. 2.1) that Equation (2.10) tends to

G(f)=f_: g(tye 2™ dt (2.14)

and Equation (2.11) becomes

g(t) = f : G(f)e>™ df (2.15)
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Equation (2.14) is known as the “forward” transform and Equation (2.15) as
the “inverse” transform while together they form the “Fourier Transform Pair”.
It can be seen that they are almost symmetrical. The only difference is the sign
of the exponent of e. The most important thing about the symmetry is that
results which apply to transformation in one direction generally also apply to
transformation in the other direction. Fig. 2.6 compares the Fourier Integral
Transform with Fourier Series and other degenerate forms which are to be
discussed.

2.2.3. Sampled Time Functions

Another form of the Fourier Transform pair applies to sampled time func-
tions, i.e. functions which are represented by a “Time-Series”, a sequence of
values at discrete equi-spaced points in time. This case is becoming very
important with the increase in digital processing of data.

It can be seen that this is a situation which is the reverse of the Fourier Series
case (as illustrated in Fig. 2.6 (b)) and because of the symmetry of the Fourier
transform pair, it happens that the spectrum becomes periodic, with a period
equal to the sampling frequency f; (the reciprocal of the time interval At
between samples). This situation is represented in Fig. 2.6(c), and the reason
for the periodicity will become clear in the following discussion of the Discrete
Fourier Transform.

The particular form the Fourier Transform takes for sampled time functions is
as follows:

[ee]
G(fy= 3, glt,)e/2mf (2.16)
n=-oo
1 fe/2 .
oty =4 [ e dr (2.17)

where t, = n At, i.e. the time corresponding to the n th time sample.
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Fig. 2.6. Various forms of the Fourier transform
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2.2.4, Discrete Fourier Transform

The final possibility occurs when the functions are sampled in both time and
frequency domains as illustrated in Fig. 2.6(d). Because of the sampling, it is
evident that both time signal and frequency spectrum are implicitly periodic in
this case, and this periodicity (or “circularity”) leads to some interesting effects
which will be discussed later.

The forward transform now takes the form?
1 N-1 . 2wkn 2 18
Glky=5 2, gme’ W (2.18)
n=0

and the inverse transform takes the form?

N-1
gm=73 Gke W (2.19)
k=0

Because the infinite-continuous integrals of Equations (2.14) and (2.15) have
been replaced by finite sums, the above transform pair, known as the “Discrete
Fourier Transform” or DFT, is much better adapted to digital computations.
Even so, it can be seen that in order to obtain N frequency components from N
time samples (or vice versa) requires N2 complex multiplications. A calculation
procedure, known as the “Fast Fourier Transform” or FFT algorithm, which
obtains the same result with a number of complex multiplications of the order of
N log, N, is discussed in detail in Chapter 4. The reduction factor in computation
time is thus of the order of N/log, N, which for the typical case of N = 1024 (2'°)
is more than 100.

However, while leaving the FFT till later, it is useful at this stage to look at the
properties of the DFT, since this gives an insight into many fundamental
concepts, e.g. sampling theory. One way of interpreting Equation (2.18) is as the
following matrix equation:

1 ag, (2.20)

-éTr:N

t Note that for convenience the time and frequency functions have in this case not been made
symmetrical about the origin, but because of the periodicity of each, the second half also
represents the negative half period to the left of the origin. Note also that parameter k refers to
frequency f, and n to time t,
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where Ek is a column array representing the N complex frequency
components,
1/N is a simple scaling factor,
A is a square matrix of unit vectors and
g, is a column array representing the N time samples.
For the particular case of N =8, the Equation (2.20) may be visualized as
follows:

Go R R A A A S O | 2
G, 2 = N v o« X9
G, T - |l <« 1 - | <1l 92
Gs|_1T1 N 2 LN > v lgs (2.20a)
G, 8 i T A i Ll 94
Gs v = N | 2 o« Nlgs
Gs « | => 1 « | -9
| G7 T N « v | N - ~lg]

Each element in the square matrix represents a unit vector e /2N with a
certain angular orientation, and multiplication by this vector results in a rotation
through the angle depicted. Each row in the matrix represents a different value
of frequency (k = 0, 1, 2...7) while each column represents a different point in
time (n=0, 1, 2.....7).

For either k or n equal zero the angle is always zero and thus multiplication is
by unity. The first row of the matrix (k = 0) represents zero frequency, and since

Real

1
+ "y revolution
0

7 .
+ 3 revolution

Imag. -f— \

770136

Fig. 2.7. Equivalence of positive and negative rotations for sampled functions
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all elements equal one, calculation of G, involves a simple addition of all the
time samples (g,) followed by division by 8 ( = N). As would be expected this
results in the DC component. The second row (k = 1) represents the lowest non-
zero frequency and it can be seen that for increasing values of n the angle
changes by 27/Ni.e. 1/N th of a revolution. (Note that for the forward transform
the negative sign of the exponent actually gives a rotation in the negative
direction as explained previously). For k = 2 the rotational frequency is 2/N ths
of a revolution per time sample and so on up to the last row which represents
(N-1)/N(in this case 7/8) revolution per time sample. Note that this can be more
easily interpreted as a rotation, in the opposite direction, of 1/Nth of a revolu-
tion per time sample and thus equally well represents the frequency —27/N per
time sample (Fig. 2.7). In fact all the frequencies above k = N/2 (in this case 4)
are more easily interpreted as negative frequencies and this is perhaps the
easiest way of understanding Shannon’s Sampling Theorem®. We have seen
(Equation 2.12)) that the negative frequency components of a real-valued time
function are determined with respect to the positive frequency components and
thus if there were any frequency components above the Nyquist frequency (half
the sampling frequency i.e. half a revolution per time sample) then these would
become inextricably mixed with the required negative frequency components,
thus introducing an error. The periodicity of the spectrum for sampled time
functions also becomes clear from examination of Equation (2.20a). The first
row of A could equally well represent the sampling frequency f; (one revolution
per time sample) or 2fs, and so on, and thus the A matrix could equally
represent the frequencies k = 8 to 15, 16 to 23 etc. (Fig. 2.8). Since the rotating
vectors are only sampled at discrete points in time, all information is lost about
how many complete revolutions may occur between samples. However, restric-
tion of frequency content to less than half the sampling frequency removes the
ambiguity.

The misinterpretation of high frequencies (above half the sampling frequency)
as lower frequencies, as illustrated in Fig. 2.8, is termed “aliasing”, and this is
obviously one of the pitfalls to be avoided when digitizing continuous signals. It
may help in understanding aliasing, to consider two practical cases with which
most people are familiar.

(1) The cartwheels in western films often appear to run backwards (i.e. nega-
tive frequency) or too slowly forwards because of the sampling involved in
filming.

(2) The stroboscope is in fact an aliasing device which is designed to repre-
sent high frequencies as low ones (even zero frequency when the picture is
frozen).

T Shannon’s Sampling Theorem states that a sampled time signal must not contain components at
frequencies above half the sampling rate (the so-called Nyquist frequency)
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Fig. 2.8. lllustration of “aliasing”

(a) Zero frequency or DC component

(b) Component at sampling frequency f, interpreted as DC
(c) Frequency component at (1/N)f,

(d) Frequency component at [(N+ 1)/NJf,
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2.2.5. Spectral Density

Despite the similarity between the various forms of the Fourier transform, it is
important at the same time to point out the differences between them. For
example, with those forms where the spectrum is a continuous function of
frequency (Equations (2.14), (2.16)) the spectral components have the dimen-
sions of “spectral density”. In particular, the amplitude squared spectrum
typically has the units of energy per unit frequency (e.g. Voit? seconds/Hz) and
must be integrated over a finite bandwidth to give a finite energy. The term
“power spectral density” (PSD) is used for stationary random functions, whose
spectrum is continuous, but which have a finite and (statistically) constant
power. To apply this concept to stationary deterministic signals (with discrete
spectra) involves the use of delta functions as described in Section 2.1 and it is
more common to represent their spectra as “power spectra” scaled directly in
power units (cf. Fig. 2.5).F

2.2.6. Power vs. Energy

A further difference in dimensions becomes evident when comparing Equa-
tion (2.14) with Equation (2.10). Equation (2.14) is intended to apply to transients
(with finite total energy) and if for example it is applied to a tone burst, then the
value of the integral increases directly as the length of the tone burst increases.
In contrast, Equation (2.10) applies to periodic (stationary) signals, and the
division by T normalises the result to a (virtually) constant value independent of
the length taken into account even if T is allowed to extend over several
periods. Consequently, the spectrum which results from squaring the ampli-
tudes of the components obtained from Equation (2.14) has the dimensions of
“energy spectral density”. In cases where a PSD analyzer is used to analyze an
impulse which has been recorded on a loop (tape loop or recirculating digital
memory) the power spectral density units obtained must be multiplied by the
loop length (i.e. repetition time) to obtain the correct results in terms of energy
spectral density. If the power spectrum has been measured, then the results
must also be divided by the analyzer bandwidth to obtain the spectral density. It
is a precondition that the analyzer bandwidth must be less than the bandwidth
of the function being analyzed for such a result to be correct (see Section 2.4.4
for a more detailed discussion of this).

Strictly speaking, none of the forms of the Fourier transform shown in Fig. 2.6 applies to
stationary non-periodic signals, and for example it would be necessary to normalise Equation
(2.14), by dividing by a factor proportional to the long-term limit of the integral (e.g. T for
deterministic signals, V7 for random signals) before taking the limit as T— co. In practice, this
mathematical finesse is not necessary, because all practical signals are of finite duration and
can thus be treated as transients (to which Equation (2.14) applies) even when the resuts are
interpreted in terms of the equivalent infinitely long signal, which is a mathematical abstraction.
The various signal types mentioned here are discussed in detail in Section 2.4.
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2.3. BANDWIDTH

So far the concept of “bandwidth” has not been explained, since the results
of a mathematical Fourier analysis have infinitely narrow bandwidth (df). This is
never possible in practice, for reasons which will become obvious, and so the
concept of bandwidth must be introduced.

e— B —
Amplification ¢4 _ ___ _ __
Factor :
I
|
!
|
|
0 |
fl : fu Frequency
e, =/ T (constant % bandwidth)
£+ 1 i
§ =4l (constant bandwidth)
c 2 740821

Fig. 2.9. Ideal filter

The term originates from the use of bandpass filters, which have the property of
passing only that part of the total power whose frequency lies within a finite
range (the bandwidth). The concept can be understood from consideration of
the so-called “ideal filter” whose power transmission characteristics are illus-
trated in Fig. 2.9. This transmits, at full power, all components lying within its
passband of width B and attenuates completely all components at other fre-
quencies.

The concept of bandwidth can also be extended to mean the degree of
frequency uncertainty associated with a measurement. This applies directly to
the case of the ideal filter, in the sense that the frequency of a transmitted
component can only be said to lie somewhere in the bandwidth. Practical filters
have a characteristic which differs from that of an ideal filter as illustrated in
Fig. 2.10. These differences are discussed in more detail in the next chapter, but
at this stage it is useful to consider the meaning of bandwidth in this case, since
it is no longer immediately obvious. The so-called “effective noise bandwidth”
is defined as being the width of ideal filter with the same reference transmission
level which transmits the same power from a white noise source (which has a
PSD which is constant with frequency). It can be obtained by integrating the
area under the power transmission curve (the shaded area in Fig. 2.10) and
dividing by the reference level.

The bandwidth associated with a measurement is not necessarily determined
by the bandwidth of the filter used (in particular where none is used such as in
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Fig. 2.11. Measurement of frequency by counting peaks
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digital calculations). The other factor which plays a role is the effective length of
the record on which the measurement is made, and in fact a record length of T
limits the bandwidth to a minimum of 1/T.

This simple relationship may be demonstrated from the following model:
suppose that it is necessary to measure the frequency of an unknown sine-like
wave, and that the duration of the measurement is fixed at T seconds. With
what bandwidth can the measurement be made? One way of making the
measurement is to count the number of positive peaks of the sine wave and
divide the number by T. This method is illustrated in Fig. 2.11.

Let us now examine which frequencies are measured for the examples of
Fig. 2.11. In case (l), one peak is counted, and hence the frequency is 1/T Hz. In
cases (ll) and (lll), 2 peaks are detected, and hence the frequency of both is 2/T

Record Length T

AN UA\/\ AN

(b)

(c) /

761194

Fig. 2.12. Three possibilities for the signal of Fig.2.11(IV)
(a) Continuous sine wave
(b) Tone-burst of length T
(c) Loop of length T
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Hz. In case (IV), 3 peaks give a frequency of 3/T Hz. Hence, because we have
limited the measurement period to T seconds, it is not possible to measure a
sine wave frequency to better than 1/T7, i.e. the best bandwidth which can be
obtained is 1/T Hz.

It might be argued that the frequency could be measured more accurately by
extrapolating the sinewave to an integer number of periods and measuring this
time exactly, but it must not be forgotten that it is not certain that the signal
continues as a sinewave. Two other possibilities are illustrated in Fig. 2.12 for
the signal of Fig. 2.11 (IV). In one case the signal is a tone burst of length T,
while in the other case it is a periodic signal of length T. Even though these have
different spectra, this can only be determined by using a bandwidth less than
1/T. Thus the frequency uncertainty, or bandwidth, is equal to 1/T.

The concept of a filter characteristic being associated with a record length of
T can also be illustrated using the rotating vector analogy introduced previous-
ly. The discussion of periodic signals in Section 2.2.1 considered only the case
where the frequency components all fell at multiples of f, the fundamental
frequency. Even after multiplication by e 27! the rotation of any component
would still be at an integer multiple of f, and would thus result in an integral
number of rotations over the period time T. As illustrated in Fig. 2.3(b) this
would always result in an integration to zero for components other than that
with frequency f,. If the signal contained a continuous range of frequencies,
however, then the integration of the rotating vector over time T would not
always be exactly zero. For example, if there is a component with a frequency
of f_+ Af, then after multiplication by e ~/27% it will continue to rotate at A f. If
Afis only a small percentage of f;, then the total rotation over time T would
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Fig. 2.13. (a) Resultant for A f <f,
(b) Resultant for Af = f;/2
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only be small part of a revolution, and the average would still be almost the
same as with zero rotation (see Fig. 2.13(a)). Note, however, that the phase of
the resultant is turned through a small angle.

When Af= f,/2 (i.e. the frequency lies halfway between f, and f,, ;) then the
vector will rotate through half a revolution in time T and the resultant is
illustrated in Fig. 2.13(b).

The length of the resultant can be determined by integrating that component
of each vector which is aligned with the resultant and in Appendix A it is shown
how this results in

Aesut = %A (2.21)

Real

770080

Fig. 2.14. Effect of Af = 3f,/2
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This is approximately 3,9dB less than A. In this case, the phase of the resultant
is obviously turned through 90°.

Continuing on in the same way, one finds that the resultant at Af = f, is of
course zero, but for example with Af= 1,5f, the situation is as illustrated in
three dimensions in Fig. 2.14 (where the axis normal to the complex plane now
represents time rather than frequency).

In this case, the vector rotates through 1,5 revolutions in time T, where the
resultant of the first revolution is zero and only the last half revolution gives a
resultant. The length of the resultant will now evidently be 1/3 of that for Af =
f,/2 (since only /3 of the total number of vectors contribute to it).

i.e. Areeut = %A (approx. 13,4dB less than A) (2.22)

3

If the relative amplitude of the resultant is plotted against Afit will in fact be
found to trace the well-known | sin x/x| curve as illustrated in Fig. 2.15.

This can be considered as a filter characteristic with which the original signal
is filtered when the record length is limited to T. Note that the power transmis-
sion characteristic is thus equal to sin®x/x? (where x = w Af/f) and as shown in
Appendix A this has an effective noise bandwidth given by

By = (2.23)

i.
T
as previously stated.

Before leaving this analogy it is worth noting that the phase shift of the
resultant is due to the fact that the time signal was not taken as symmetrical
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Fig. 2.15. Effective “filter characteristic” for record length T
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Fig. 2.16. Effect of symmetry about time zero
(a) 3-dimensional representation
(b) View along time axis

about zero time. If the integration period is chosen to be from — T/2 to 7/2 and
the original signal symmetrical (i.e. a cosine) the resultant will in all cases be
directed along the Real Axis and no phase shift will be introduced. This is
illustrated for the case of A f= f,/2 in Fig. 2.16, which should thus be compared
with Fig. 2.13(b).

Quite a lot of space has been devoted to these fundamental relationships
between record length (or “time window”) and the resulting spectrum. The
results can be obtained much more efficiently using the “Convolution Theo-
rem” of Section 2.5.3, but it is thought that this elementary approach gives
more physical insight, and helps in the interpretation of convolution.

2.4. SIGNAL TYPES

Before discussing convolution it is as well to examine the various types of
signal which are encountered in practice. The type of signal to be analyzed has
an influence on the type of analysis to be carried out and also on the choice of
analysis parameters. Fig. 2.17 indicates the basic divisions into different signal
types.

The most fundamental division is into stationary and non-stationary signals.
A rigorous definition of stationary random functions is given in Ref. 2.2, but for
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Fig. 2.17. Division into different signal types

practical purposes it is sufficient to interpret stationary functions as being
those whose average properties do not vary with time and are thus indepen-
dent of the particular sample record used to determine them. This applies to
both deterministic and random signals, but in particular in the latter case it is
important to realise that the results obtained from different records are not
necessarily identical, just equally valid.

The instantaneous value of a stationary deterministic signal is predictable at
all points in time, while with stationary random signals it is only the statistical
properties such as mean values, variances etc., which are known.

Non-stationary signals may be roughly divided into continuous non-station-
ary signals (of which a good example is speech) and transient signals which
may be defined as those which start and finish at zero. Of course in practice
even signals such as speech must start and finish at some time, but the
difference is perhaps more fundamentally that a transient is treated and
analyzed as a whole, whereas a continuous non-stationary signal, such as
speech, will normally be analyzed in short sections, each of which will often be
quasi-stationary.

It is interesting to look at each of these signal types in more detail, so as to
see how the differences show up in various representations.

40




l“l”lll”l‘lu

Frequency (Hz)

Frequency (Hz)

111

(a) Periodic

(b) Quasi - periodic

740812

Fig. 2.18. Typical periodic and quasi-periodic spectra

2.4.1. Stationary Deterministic Signals

Stationary deterministic signals are made up entirely of sinusoidal compo-
nents at discrete frequencies. In periodic signals, as we have seen, all these
discrete frequencies are multiples of some fundamental frequency, the recipro-
cal of the periodic time. In quasi-periodic signals, the frequencies of the
various sinusoids are not harmonically related. If carried to extremes, this
means that the ratio between at least two frequencies must be an irrational
number such as VE but in practice it can be seen that quasi-periodic signals
will typically arise from mixtures of two or more independent sets of harmon-
ics, such as from an aircraft turbine engine with two independently rotating
shafts.

Fig. 2.18(a) and (b) shows how the power spectra of typical periodic and
quasi-periodic signals appear. The approach to frequency analyzing them is
basically the same. The filter bandwidth should be selected so as to separate
the most closely spaced components and in that case there will only be one
sinusoid in the filter passband at one time. If this condition is satisfied, the
transmitted power is independent of the bandwidth. It might be argued that the
closest spacing will only be known after analysis, and in some cases it may be
necessary to use a sort of trial-and-error process, but in many cases the likely
location of frequency components will be known in advance, e.g. as harmonics
of a machine rotational speed, or mains frequency.
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Fig. 2.19. Continuous spectrum of a stationary random signal

Normally, a constant bandwidth analysis on a linear frequency scale will be
most appropriate to the analysis of deterministic signals, since harmonically
related components will then be equally separated and resolved.

Occasionally, ii/is not possible to separate closely spaced components, and
then it is important to realise that the signal passed by the filter will have a beat
frequency equal to the difference between the most closely spaced compo-
nents. The signal must then be analyzed over several periods of the beat
frequency in order to be considered as stationary. This will occasionally be a
more demanding requirement than that required in the analysis of random
signals.

2.4.2. Stationary Random Signals

In contrast to deterministic signals, random signals have a spectrum which
is continuously distributed with frequency, as shown in Fig. 2.19. Accordingly,
the power transmitted by a filter varies with the bandwidth, and for a relatively
flat spectrum is directly proportional to it. As mentioned in Section 2.2.5 it is
possible to remove this influence of filter bandwidth by dividing the transmitted
power by the bandwidth, thus normalising the result to a “power spectral
density”. The requirement that the spectrum is relatively flat will be satisfied if
the filter bandwidth is chosen to be narrower (e.g. one-third of the width) of any
peaks in the spectrum being measured. Once again a trial-and-error process
may sometimes be required to determine whether this condition is satisfied,
but in many cases it will be known in advance from the physical conditions. For
example, peaks in the spectra of random signals often arise from filtration of a
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broadband signal by a physical system whose frequency response is charac-
terised by a number of resonances, each with a certain Q-factor (i.e. amplifica-
tion factor). The range of Q-factors will often be determined by choice of
materials etc., and since there is an inverse relationship between Q-factor and
percentage bandwidth, the latter will often be known roughly in advance.

Even though the power spectrum of a random function may be well-defined,
the phase spectrum is random, and thus normally not of interest in the analysis
of single signals. In the analysis of multiple channel signals the phase relation-
ships between two or more spectra will often be meaningful.

Even though their instantaneous value cannot be predicted, random signals
may be characterised by their probability density curves. The meaning of this
concept can be understood by reference to Fig. 2.20. The probability density
p(x) at some level x is defined as the probability that the signal value lies
between x and x + A x, divided by the interval width A x (thus giving a density).
Thus if P(x) represents the total probability that the signal value is less than x,
then

P(x + AX)-P(x)

pi9 = lim x (2.24)
Referring to Fig. 2.20, it will be seen that
ZAt
P(x+ Ax)-P(x) = lim a (2.25)
T— o0 T

where each A t, represents one of the time intervals in T where the signal lies
between x and x + A x.

x? );Atn = Aty + Aty + Atz + AL,
Aty
yax "‘
? L".‘ /u\
X Aty Aty Aty
A Mean (X,)
VA = A
T
t‘
271267

Fig. 2.20. Sketch illustrating the concept of probability density

43



= 1 _{x=p)?
pIx)= C i e [ =5k

I
|
[
!
I
|
|
|
|
|
|
|
|
|
[

T T T r Y
4 -3¢ =2 K- u M to H +20 u +30 740823/1

Fig. 2.21. Gaussian distribution

Gaussian random signals, which can be used as a model for many random
signals encountered in practice, have a probability density curve of Gaussian
shape, as illustrated in Fig. 2.21.

The equation of this curve is

(x—u)z}

1
or-—L o |-
oy2m 20°

(2.26)

This may appear somewhat formidable, but it is in fact just an e~ curve
centered on the mean value u and scaled in the following way:

1. Inthe x-direction it is scaled in terms of ¢, the standard deviation from the
mean u. For zero mean, ¢ is also the RMS level of the signal, and ¢° the
variance or power.

2. In the y-direction it is scaled so that the total integral under the curve for
all x is 1, which of course is the probability that x can have any value
between =+ co.

2.4.3. Pseudo-random Signals

Pseudo-random signals are a particular type of periodic signal sometimes

used to simulate random signals. Even though periodic, the periodic time T is
very long and thus the spectrum line spacing (1/T) very close (Fig. 2.22). Phase
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Fig. 2.22. Amplitude and phase spectra for a pseudo-random signal

relationships between adjacent spectral lines are to all intents and purposes
random, so that provided the bandwidth of any resonance peaks spans over a
large number of spectral lines then the effect of applying it as input to a linear
physical system will be very similar to that of a truly random signal. The
probability density of such pseudo-random signals may be made very close to
Gaussian.

On the other hand, a pseudo-random signal can be reproduced exactly, and
this may be of benefit in the standardisation of testing. It must be remembered
though, that the signal is periodic, and thus for example non-linearities are
always excited in exactly the same way; one does not obtain the best linear
approximation as one does with a truly random signal.

2.4.4. Transient Signals

As mentioned previously, a transient may be considered as a signal which
commences and finishes at zero. Fig. 2.23 shows the following three typical
examples:

1. A rectangular pulse
2. A half cosine pulse

3. A tone burst
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sin 6, sin 02>
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2
=0 otherwise Oy =2m(f+ 5)
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Fig. 2.23. Various transients and their spectra
(a) Rectangular pulse
(b) Half cosine pulse
(c) Tone-burst




together with their spectra as derived using Equation (2.14). It is emphasized
that the squares of these spectrum amplitudes have units of energy spectral
density, as explained in Section 2.2.6. Thus the integral of the squared spec-
trum amplitude over all frequency gives the total energy of the transient. This
can also be obtained by integrating the instantaneous power (i.e. amplitude
squared) over all time.

e f_m |G(f)|2df=f_°° | g(t)| 2t 2.27)

This is @ more general form of Parseval’s theorem which was referred to in
Section 2.2.1 (See also Ref. 2.1).

All the above examples are real even functions which transform to real even
functions in the other domain. In the more general case, description of the
overall spectrum requires that the phase spectrum be shown as well. As an
example, Fig. 2.24 shows the amplitude and phase spectra for a rectangular
pulse starting at zero time, and this can be compared with Fig. 2.23(a).

(a) Time Signal A

(b} Amplitude Spectrum AT

~7
32
T T T

- =
—iN
=W
- &
=l o

-1
T

{c) Phase Spectrum

P

Fig. 2.24. Rectangular pulse starting from zero
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Analysis of a transient is often performed by treating it either directly or
implicitly as though it were repeated periodically with repetition time T. Be-
cause of the artificially introduced periodicity, the measured spectrum be-
comes a line spectrum with line spacing 1/7, but the individual lines can be
considered as samples of the true continuous spectrum, (see Section 2.5.3)
and the line spacing can be made arbitrarily small by increasing T.

Of course the spectrum of the periodic signal will normally be represented on
an amplitude rather than a spectral density scale, but the scaling of the results
is relatively simple. The measured power of each spectral line is the average
power of the periodic signal in a frequency bandwidth corresponding to the line
spacing. The energy in the same frequency bandwidth for one repetition of the
transient is evidently obtained by multiplying this mean power by the repetition
time T. Finally, the energy spectral density at each frequency is obtained by
dividing by the bandwidth 1/T7, so that the overall result is a multiplication by T2,
It should be noted that the result obtained will even so be independent of T
(provided the latter is longer than the transient) since for example a doubling of
the repetition time will result in a quartering (-6 dB) of the measured power of a
spectral line at a given frequency, partly because the same energy is spread
over twice the time, and partly because one spectral line is replaced by two. A
doubling of the repetition time will however permit measurement with half the
bandwidth, and thus allow a more detailed resolution of the spectrum. This and
other practical considerations are discussed in more detail in Chapter 5.

2.4.5. Non-Stationary Signals

Although the term “non-stationary” covers all signals which do not satisfy
the requirements for stationary signals, the majority of useful non-stationary
signals are such that they can be divided up into short quasi-stationary
sections. For example, a continuous train of speech can be divided up into
short individual sounds; vowels, consonants etc.

The process of dividing up such a continuous signal into short sections is
called “time windowing” because the total signal can be considered to be
viewed through a window which only transmits the portion of interest. The
simplest way of applying such a window is to cut off the signal at each end. It
will be seen that this can be considered as a multiplication by a rectangular
weighting function of length T, which gives uniform weighting along the select-
ed sample. However, the effect of this on a typical frequency spectrum compo-
nent was discussed in Section 2.3 where it was shown that the original spec-
trum has effectively been filtered by a filter characteristic corresponding to the
Fourier transform of the rectangular weighting function. In Section 4.3.2 it is
shown that smooth non-uniform weighting functions, such as the Hanning
weighting function, have a more desirable filtering effect and are often prefera-
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ble, and details are given as to their selection. Fig. 2.25 shows how such a
“window” can be moved along a speech record to permit successive analysis of
the various components of a particular utterance. After multiplication of the
original signal by such a weighting curve, the result is a transient which may be
analyzed in the same way as transients in general. The question of scaling is,
however, the reverse of that discussed in Section 2.4.4, since results will
normally be interpreted in terms of the power of the equivalent stationary signal
represented by the windowed segment. Details of this are given in the appropri-
ate sections on practical analysis.

Amplitude-time function of the English word “this”

|
ANYTOOYD
YN 4
1./ 5 \ . H‘anning functioﬁn used as time window
1[ 100 I 200 300 400 Time ms
' !
| l
| __} Windowed time function

171453/1

Fig. 2.25. Use of a time window in speech analysis

2.5. CONVOLUTION

It was mentioned in the Introduction that one of the most important proper-
ties of the Fourier Transform is that it transforms a convolution into a multipli-
cation. It is the intention here to examine this statement in more detail, and at
the same time to point out the advantages which accrue from it, as well as
using the theorem to give a better theoretical background to some of the
statements made in earlier sections.

First, it is necessary to define convolution and also to give examples of its
application so that it acquires a physical meaning.

The convolution of two time functions f(t) and h(t) is defined mathematically
as:

g(t) = f : f(r) h(t-7) dr (2.28)
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For convenience, this is often represented symbolically as:
g(t) = f(t) * h(t) (2.28(a))

where the star means “convolved with”.

One major application of this relationship is to the case where f(t) represents
an input signal to a physical system and h(t) the impulse response of the
system. g(t) will then be the output of the system. A discussion of Fig. 2.26
should help to illustrate why this is so. Fig. 2.26(a) represents the time signal
f(t) and Fig. 2.26(b) the impulse response h(t) of a physical system to which it is
applied. The assumption is made that each point in f(t) can be considered as an
impulse (delta function) weighted by the value of f(t) at that point. Each such
impulse excites an impulse response, the scaling of which is proportional to the
level of f(t) and whose time origin coincides with the impulse. The output signal
at time t, g(t), consists of the sum of these scaled impulse responses each
delayed by the appropriate time interval from the time of excitation up to the
time of measurement. Because each point of the response curve consists of a
sum of components which have been excited at different times, it is necessary
to integrate over a dummy time variable 7. It is simplest at first to consider f(7)
as a series of impulses at discrete times t, (with time increment A t) and then let
Attend to zero in a final limiting process. Fig. 2.26(a) shows a typical impulse
f(t,), and in Fig. 2.26(c) the impulse response from this alone is shown as a
heavy line. It will be seen that this response has t, as its origin, and for example
the peak value of the response occurs at time t, = t, + 7, where 7, is de-
picted in Fig. 2.26(b). The value of this peak is evidently f(t,)- h(1,), i.e.
f(t,) - h(t,~t,), and thus at any other time t the value of the response (from f(t,)
alone) is equal to f(t,) - h(t-t,) as illustrated. The response at time ¢, from the
signal applied at time t, might be termed g,(t,) and thus the total response at
time t, is equal to the sum of all the responses excited at the various times.

[oe] [oe]
e gltd= D, gnlt)= D, f(t)h(t—ty)

n=-o0 n=-co

More generally, at time t the response
(o]

gity= 3, ) h(t-t,) (2.29)

n=-o

It will be seen that in the limit as A t—0 Equation (2.29) tends to Equation
(2.28) as shown in Fig. 2.26(d).
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Fig. 2.26. Convolution of two time functions

2.5.1. Convolution with a Delta Function

A special case which arises in various situations involves convolution with a
delta function, which in fact is found to be relatively simple. Fig. 2.27, which is
comparable with Fig. 2.26, illustrates a typical situation where h(t) is a unit delta
function 6 (t-7,) with a delay time of 7, (Fig. 2.27(b)). In Fig. 2.27(c) it is shown
how each discrete impulse in the original time function f(t,) now generates a
single impulse in the response, delayed by 7,. The overall effect is to delay the
whole signal by 7,, but otherwise to leave it unchanged. If the delta function is
weighted with a scaling factor then the entire response is also weighted by that

scaling factor.
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In general it can be said that the effect of convolving a function with a delta
function is to shift its origin to the delta function.

flt,)
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(c) J\ |
‘o
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Fig. 2.27. Convolution with a delta function

2.5.2. Convolution of Spectral Functions

So far only the convolution of two real-valued functions has been discussed,
but it is possible for two complex functions to be convolved, for example two
frequency spectra.

The convolution equation is still the same, viz.

Fi = Hn = [ F@) HIE¢) dg (2.30)

but since F(f) and H(f) are complex variables, the multiplication is now a
complex multiplication (i.e. multiplication of amplitudes and addition of phases)
and the integration represents a complex or vector addition.
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2.5.3. Convolution Theorem

The Convolution Theorem states that the Fourier Transform (either forward
or inverse) transforms a convolution into a multiplication and vice versa. For
example, for the case represented by Equation (2.28)

if G(f)=F {g(t)} i.e. the forward Fourier transform of g(t)
F(fy=F { f(t)}

and  H(f) = F { h(t)} (2.31)

and it g(t) = f(t) * h(t)

then G(f) = F(f) - H(f)

A proof of this is given in Appendix A for a forward Fourier transform, but it
can be appreciated that because of the symmetry of Equations (2.14) and (2.15)
the same will apply to the inverse transform.

The benefits of this are immediately apparent when interpreted in terms of
the excitation and response of a physical system. H(f), the forward Fourier
transform of the impulse response is known as the frequency response func-
tion. The spectrum of the output is obtained very simply by multiplying the input
spectrum by the frequency response function at each frequency. The equivalent
convolution in the time domain is evidently a much more complicated proce-
dure.

Another example of a convolution transforming to a product is represented
by the case referred to in Section 2.4.4., viz. that periodic repetition of a
transient results in a sampling of its spectrum in the frequency domain. This is
illustrated in Fig. 2.28. Fig. 2.28(a) shows the original transient and its spectrum.
Fig. 2.28(b) shows a train of unit impulses with a spacing of T, and its spectrum
which is another train of impulses with spacing 1/T (Ref. 2.1, 2.3). Fig. 2.28(c)
shows the periodically repeated transient which can be considered as the
convolution of the original transient with the impulse train (see Section 2.5.1).
The Convolution Theorem indicates that the resuit of this convolution will be a
multiplication of the respective spectra, thus giving a train of delta functions at
frequency intervals of 1/T and weighted by the original spectrum level at the
corresponding frequency. This corresponds to a sampling of the spectrum at
intervals of 1/T as assumed in Section 2.4.4.
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Fig. 2.28. Periodic repetition of an impulse

It is perhaps also useful to give an example of the other version of the
Convolution Theorem viz. that a multiplication in the time domain transforms to
a convolution in the frequency domain.

Fig. 2.29 illustrates the case discussed in Section 2.3, viz. the effect of a
truncation to a record length of T. Fig. 2.29(a) represents an endless cosine
function in both time and frequency domains. Note that the arrows at = f,
represent delta functions which should of course be infinitely high. For compari-
son purposes Fig. 2.29(b) shows a sine function, whose spectrum only differs
by virtue of the initial phase angles of the positive and negative frequency
components. Fig. 2.29(c) shows a rectangular “time window” of length T, evenly
divided about zero time, and its frequency spectrum. As shown in Appendix A
the latter is a (sin x/x) function with zeroes at multiples of 1/T. The third column
of Fig. 2.29 shows the power spectrum which is to be discussed later.
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Restricting the length of either the cosine or sine function to T is the same as
multiplying it by the rectangular time window and this is illustrated in
Fig. 2.29(d) and (e). This corresponds in the frequency domain to a convolution
of the respective frequency spectra. This can be done separately for the
positive and negative frequency delta functions and consists, as shown previ-
ously, in replacing each of them by the convolving function F;(f). The result is
then obtained as the sum of the positive and negative frequency contributions.
It will be appreciated that it is primarily in the vicinity of zero frequency (where
the two (sin x/x) functions have the same magnitude) that there is a significant
interaction. In the vicinity of either £, or — £, the result is virtually a (sin x/x) filter
characteristic centred on * f,, as derived heuristically in Section 2.3. In the
vicinity of zero frequency it is perhaps of interest to note that because the two
(sin x/x) functions have the same phase in Fig. 2.29(d), they reinforce and give
a DC component, while in Fig. 2.29(e) they are opposed and give zero DC
component. This can also be seen from the respective time functions, where in
Fig. 2.29(d) it has 5 positive lobes against 4 negative, while that in Fig. 2.29(e)
has 41/2 positive and negative lobes and is thus balanced.

It is interesting to investigate what effect the convolution of the complex
spectra has on the power spectra, since, as mentioned previously, one is often
most interested in the power spectrum. The third column of Fig. 2.29 shows the
power spectra corresponding to the various complex spectra, and this reveals
that although the power spectra for the sine and cosine are the same
(Fig. 2.29(a) and (b)) the power spectra for the convolved spectra are different
(Fig. 2.29(d) and (e)). Thus, the power spectrum of the convolved function is not
equal to the convolution of the power spectra. However, Fig. 2.30 compares the
latter with the two other alternatives, and it is found that it lies between them.
The convolution of the two power spectra has a value at zero frequency which is
double the PSD of the contribution of the positive frequency component alone
(i.e. +3dB). The power spectrum of the cosine case (Fig. 2.29(a)) is four times
larger at zero frequency (i.e. + 6 dB) since the linear amplitudes add rather than
the squared amplitudes. The convolution of the power spectra in fact repre-
sents the “average” case, where the phase angle between the positive and
negative frequency components of the sinusoid is 90°, and this is incidentally
the value which will be approached if the power spectrum is obtained by
averaging over several records of length T taken at random along the sinusoid.

Thus in this sense it can be said that the power spectrum of the convolution is
equal to the convolution of the power spectra.
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Fig. 2.29. Restriction of sinusoidal signals to a length of T
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Fig. 2.30. Detail of power spectra in the vicinity of zero frequency

2.6. THE HILBERT TRANSFORM

Another relationship of which considerable use will be made in this book is
the Hilbert transform. The Hilbert Transform expresses the relationship be-
tween the real and imaginary components of the Fourier transform of a one-
sided signal.

That there should be a fixed relationship will become evident from the
following discussion, which uses the example of a causal signal to illustrate the
general case. A causal time signal is one which is equal to zero for negative
time, as illustrated in Fig.2.31(a).

i.e. a(t)=0, t<o0 (2.32)

A typical example would be the impulse response of a causal system, mean-
ing that there can be no output before the input is applied at time zero.

As illustrated in Fig.2.31, a causal signal can be divided into even and odd
components which are not independent of each other. In order for the negative
time components to cancel each other, the positive time components must be
identical. Another way of expressing this relationship makes use of the fact that
the even and odd components are related by the “sign” function, i.e.

a(t) a.(t) + a,(t) (2.33)

a,(t) = a.(t) - sgn(t) (2.34)
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and a,(t) = a,(t) - sgn(t) (2.39)
To relate these even and odd components of the time signal to the real and
imaginary components of the Fourier transform it is necessary to make use of
some relationships which have not previously been stated explicitly.
Recalling the Fourier transform equations:
G(f) = f°° g(tye =" gt (2.14)
and oy = [7 anert af (2.15)
it will be seen that the only difference between the forward and inverse trans-
forms is the sign of the exponent. This can be compensated for by reversing the
sign of the independent variable. Thus, for example, the effect of a forward
Fourier transform on a time signal g(t) is the same as an inverse transform on

the same time signal reversed end for end, g(-f).

More generally,

=
gty = G(f) = g(-t) = G-H = g(t) (2.36)

a)

a(t) = a, (t) +a,(t)

\/

b)

A a, (1)

N » a1
N .

Fig. 2.31. Division of a causal signal into even and odd components
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We also need the more general equivalent of Eqn.(2.12), which for a real
valued time signal g(t), states that

i.e.

and

G(fy = G*(-f)
R(f) = R(-f)

I(f) =-=I(-f)

(2.37)
(2.38)

(2.39)

where G(f} = R(f) + j I(f) in terms of its real and imaginary components. The
spectrum is thus conjugate even (real parts even, imaginary parts odd).

From Eqgn.(2.36) it follows that for an even function, where g(t) = g(-t), then
G(f) = G(-f). Hence, making use of Eqn.(2.37)

R(f) + jI(f) = R(f) - jI(f)

from which /(f) =0, and the spectrum is real.

Conversely, for an odd function, where g(t) = — g(- t) and G(f) = —G(-f), then
R(f) + jI(f) = —R(f) + jI(f) from which R(f) = 0, and the spectrum is imaginary.
These results, plus similarly derived relationships are summarised in Table 2.1.

Coming back to Eqns.(2.33) and (2.34) and making use of Table 2.1.

that if

then
and

Moreover,
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Time Signal

Spectrum

real and even
real and odd
imag and even
imag and odd
real

conjugate even

real and even
imag and odd
imag and even
real and odd
conjugate even
real

T01045GBO

Table 2.1. Fourier Transform relationships

F {a(t) } = A(f) = Ap(f) + jA/(F)

Ap(f) = 7 { a(t) }

JAf) = F { a(t) }

Ap(f) = F { a,(t) - sgn(t)}

we find

(2.40)
(2.41)
(2.42)

(2.43)



from which it can be seen that Az(f) and A,(f), the real and imaginary compo-
nents of the Fourier transform, A(f), of the causal time signal, a(t), are not
independent since both can be calculated from the odd part a,(t). The relation-
ship between Ag(f) and A/(f) is known as the Hilbert transform (actually Agz(f) is
the Hilbert transform of A,(f)) and can be derived from Eqn.(2.43).

Thus, using the Convolution Theorem (Eqn.2.31)
Ar(f)=F { a,(t) - sgn(t) }
=F {a)(t)} * F {sgn(t)}

= A/(f) * }1_" (2.44)

making use of the fact, that (Ref.2.4)

7 {sgn(t)} = (3/.45)

Equation (2.44) is one way of writing the Hilbert transform. Writing it out in
full, it can be expressed as

xlan}=an==1 " aw 5de (2.46)

Note that, contrary to the Fourier transform, the Hilbert transform does not
change the independent variable, and the result is in the same domain as the
original function.

The Hilbert transform of a time function is thus defined in exactly the same way:
wlan}=an =1L [* am (L )ar (2.47)
T J - t-1 ’

a(t) *( it) (2.48)

Applying the convolution theorem to Eqn.(2.48) it can be shown that the
Hilbert transform corresponds to a 90° phase shift.

Thus, F {a(ty} = AL(f) = A(f)- {=isgn(f)} (2.49)

Hence, the spectrum of the Hilbert transform can be obtained by multiplying
positive frequency components by —j (a phase shift of —90°) and negative
frequency components by +j (+90°).

~
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This procedure, illustrated in Fig.2.32, is evidently much simpler than evaluat-
ing Eqn.(2.47) directly.

F
altt Al

- t

a(t) &« Aylf)

821344/1

Fig. 2.32. The effect in the frequency domain of a Hilbert transform in the time
domain

Fig.2.33 illustrates the results of two Hilbert transforms on a cosine function
(as seen in the frequency domain). The first gives a sine function, and the
second a minus cosine. This will be recognized as very similar to an integration,
but only applies to spectra with a single frequency component w, as will be seen
from Fig.2.34. Integration in the time domain corresponds to a division by jw,
(multiplication by —j —cl—) in the frequency domain which except for the
scaling by | W ‘ is the same as a Hilbert transform.

2.6.1. Analytic Signals

An analytic signal is a complex time signal whose imaginary part is the
Hilbert transform of the real part.

Thus, if at) = d‘f{a(t)}, then
3(t) = a(t) + ja(t) (2.50)
is an analytic time signal.
To see what the application of analytic signals might be, it is interesting to
investigate another means of representing frequency components than that
used in Section 2.2. Instead of representing a general component as a sum of

positive and negative frequency phasors (whose sum is always real) it can be
represented as the projection on the real axis of a single phasor (of double
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Fig. 2.33. Hilbert transforms of a sinusoid as seen in the frequency domain
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Fig. 2.34. Equivalence of frequency weighting functions for a single frequency
component
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Fig. 2.35. Equivalence of vector sum and projection on Real Axis
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Fig: 2.36. One-sided vs. two-sided spectra

amplitude). Without loss of generality the frequency of this phasor can be taken
as positive.

Fig.2.35, which can be compared with Fig.2.2, illustrates the equivalence of
these two approaches. Thus, a time signal consisting of many frequency com-
ponents could be expressed as the sum of complex conjugate pairs at plus and
minus each frequency, or as the sum of the real parts of positive frequency
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phasors alone, each with double amplitude. Fig.2.36 illustrates the two ampli-
tude spectra corresponding to a typical situation, where the similarity to
Fig.2.31 will be obvious. The spectrum for the model based on projections has
twice the amplitude at all positive frequencies, the same amplitude at zero
frequency, and zero amplitude for negative frequencies. Note that the phase
spectra for the two models are identical (at least at positive frequencies) as will
be obvious from Fig.2.35.

The time signal can be synthesized from either model by integrating over all
frequencies. For the 2-sided spectrum of Fig.2.36(b), this is simply the inverse
Fourier transform:

g(t)=ff; G(f) e df (2.15)

For the one-sided spectrum of Fig.2.36(a) it can be expressed as

g(t) = f"; Re {Z(f) e/ } df

= Re { f‘” 2(f) e’ af ) (2.51)

i.e. the real part of the inverse Fourier transform of Z(f)
where Z(f)=0 <0

Z(fy=G(f) .f=0
Z(f)y=2 G(f) ,f>0

By analogy with Fig.2.31 it seems reasonable that the inverse Fourier trans-
form of Z(f), while complex, will have its real and imaginary parts related by a
Hilbert transform. There are two differences, however. Firstly, instead of divid-
ing Z(f) into even and odd components, it is divided into conjugate even and
conjugate odd components. The former is equal to G(f), and transforms back to
the real time function g(t). The latter transforms to an imaginary time function,
and still fulfils the requirement that it is equal to G(f) - sgn (f). The derivation
then follows that of Eqns.(2.40) through (2.45) with the additional difference that
the use of the inverse rather than the forward Fourier transform results in the
imaginary part being the Hilbert transform of the real part, rather than vice
versa. The difference between forward and inverse Hilbert transforms can
readily be shown in fact to be simply a change of sign.

Thus if, z(ty=F"{ z(f) }
then z(t) = g(t) +jg(t) (2.52)
and is thus an analytic signal.

65



\ Imag.

Real alt) Nyquist

Plot
Real
t

Magn. L THEY

821347/1

Fig. 2.37. The analytic signal corresponding to a cosine

it may be of interest to take a simple example for illustration purposes.
Fig.2.37 shows the analytic signal derived from a cosine function. The imaginary
part is thus a sine function, and the analytic function a spiral, or helix, the locus
of a uniformly rotating phasor with constant (unit) amplitude. The phase angle
¢(t) is a linearly increasing function of time (which is depicted, however,
modulo 2 ), and the slope of the phase curve represents the (constant) instan-
taneous frequency. Note that all the display modes normally associated with
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Fig. 2.38. Mode shapes for a cantilever beam in its first bending mode

frequency spectra viz. real, imaginary, magnitude, phase, and even Nyquist
(polar) display are available for depicting analytic time signals.

Generation of a complex time signal from a measurable real component may
not seem to have any physical relevance, but in fact the real and imaginary
components of the analytic function can often be related to the two forms of
energy always associated with a vibration or oscillation, viz., potential and
kinetic energy. If, for example, the real part (or more strictly speaking its
square) represents potential energy, then (the square of) the imaginary part
would represent kinetic energy.

Fig.2.38, for example, shows a cantilever beam, and its first bending mode of
vibration. Because this occurs at a single frequency the displacement mode
shape depicted applies equally to its velocity (or acceleration). Also shown is its
strain “mode shape” which is quite different (in fact the second derivative of the
displacement mode shape). At the extremity of an oscillation, expressed in
terms of the typical displacement coordinate d,, the velocity is zero, and all
energy is in the form of internal strain energy. If a typical value of strain in this
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situation is €, then the total strain energy can be represented as C; ¢y
where C; is a constant with the appropriate physical dimensions. In the unde-
formed position, all the strain energy has been converted to kinetic energy
which in terms of a typical velocity coordinate v, can be expressed as C, v,?,
where C, is another constant. Since the total energy is the same the constants
C, and C, must be scaled such that

Ci &’=C, v?=C (2.53)

The values ¢, and v, represent the extremities of a sinusoidal oscillation, and
at any other time in the cycle the total energy is also constant, i.e.

C, E(t)+C, v3(t)=C (2.54)

It is under these conditions that €(t) and v(t) must be Hilbert transforms of
each other, except for a scaling constant defined by Eqn.(2.53). In this simple
case of a constant amplitude oscillation, if e(t) = ¢, cos 27f,t then
v(t) = vy sin 2mfyt. The total energy at any time is given by

Ci(€ cos 27fy t)2 + Co(vp sin 2mhy t)2
= C[cos?(27fy t) + sin?(2m ft)]
=C Q.E.D.

Note that the coordinates ¢, and v, are typical coordinates representing the
peak deflection in a particular mode shape and can be considered to be a
scaled version of the peak value almost anywhere in the system. Nodal points in
either mode shape are here excluded, however, because it is then impossible to
satisfy Eqn.(2.53). In the particular case of a cantilever beam, as in Fig.2.38, the
coordinates at either end of the beam cannot be used, since the free end is a
node for the strain mode shape, and the built-in end is a node for the velocity
mode shape.

Consideration of Fig.2.36 and the frequency functions G(f) and Z(f) confirms
these energy considerations in the frequency domain as well. Neglecting the DC
component (which does not enter into the oscillation), each (positive) frequency
component in Z(f) has twice the amplitude and thus four times the energy of the
equivalent component in G(f). On the other hand, the negative frequency side
of G(f) represents the same amount again, so that overall G(f) (and thus g(t))
has half the total energy contained in Z(f), which represents the sum of the
kinetic and potential energies.

Even where the total energy is not constant, such as in a damped free

oscillation, the analytic signal can sometimes be used to represent the potential
and kinetic energy components in the model.
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Fig. 2.39. Impulse response of a single degree of freedom system

Fig.2.39 shows the impulse response for a single degree of freedom system, a
damped one-sided sinewave, and its Hilbert transform. After time zero, the
Hilbert transform pair represent damped sinusoids, 90° out-of-phase, but with
the same “envelope” function, an exponential decay. The square of this ampli-
tude function represents the total energy at any time. The phase curve once
again has the constant slope corresponding to constant oscillation frequency,
and is seen to be independent of the amplitude function. On the other hand, the
abrupt discontinuity at time zero, where the impulse is applied, is seen to give
problems in that the Hilbert transform exists for negative time and is thus non-
causal. Clearly, the division into kinetic and potential energy does not apply in
this region, as all energy is supplied instantaneously at time zero, and thus the
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model breaks down. It appears that the model can only be applied for moderate
rates of addition or subtraction of energy to or from the system.

On the other hand, the use of the Hilbert transform to generate the “enve-
lope” and instantaneous phase of an oscillating function leads to another
application of analytic signals, viz. the representation of modulated signals.

2.6.2. Modulation

So far, time signals have been considered as a sum of phasors with fixed
amplitude and rotational velocity (i.e. frequency). It is in fact the purpose of
Fourier analysis to derive these fixed phasors.

In the case of modulated signals, it is often easiest initially to model the signal
in terms of a single phasor with varying amplitude and rotational speed (which
can be termed “instantaneous frequency”). It would be possible to have a model
with a complex conjugate pair of such phasors, but it is perhaps easier to deal
with the projection on the real axis of a single phasor.

A generally modulated signal can thus be expressed as
g(t) = Re { A(t)ei ] (2.55)

where the amplitude A(t) and instantaneous phase angle ¢(t) are functions of
time. The instantaneous frequency f(t) = d(t)/dt in rads/s or 21—7rd<i>(t)/dt in
Hz. It will be appreciated that if A(t)e”®® contains only positive frequencies
then it will be an analytic signal.

As an example, take a purely amplitude modulated signal. In this case
ga(t) = Re { A(t)e/2™f! } (2.56)

where f;, is the (constant) carrier frequency and A(t) describes the (real) ampli-
tude modulation function or “envelope” of the signal (normally including a DC
offset).

Figure 2.40 uses the convolution theorem to derive the spectrum of a carrier
frequency component, g.(t), amplitude modulated by a lower frequency sinu-
soid (plus DC component), g,,(t). The resulting spectrum comprises a pair of
sidebands spaced around the carrier frequency, f., by an amount equal to the
modulation frequency, f,,. In the figure, both sinusoids were taken as cosines
for illustration purposes, but in the general case it will be seen from Fig.2.41
that the phase relationships of the upper and lower sidebands must still be such
that their vector sum is always aligned with the carrier frequency component.
Fig.2.42 depicts the analytic signal corresponding to the same amplitude modu-
lation as Fig.2.40. This can now be considered as a single rotating phasor with
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Fig. 2.40. Derivation of the spectrum of an amplitude modulated signal

amplitude fluctuating sinusoidally between two limits. The purpose of Fourier
analysis, as typified by Fig.2.40, has been to decompose this single varying
phasor into a sum of three constant amplitude phasors as illustrated in Fig.2.41.

For phase or frequency modulation, the decomposition is not quite so simple,
but the representation as an analytic signal can still be made. Fig.2.43 depicts

such an analytic signal, representing single frequency modulation of a constant
amplitude carrier.
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Fig. 2.41. Amplitude modulation as a sum of phasors

The mathematical expression for the analytic signal is
gp(t) = Re { Aoej(27rlor+ B sin2mfmt) } (2.57)

where (3 is the maximum phase deviation, in radians, from the linearly increas-
ing phase of the carrier component with frequency f,. This case of a phase
modulation by a single frequency can also be interpreted as a frequency
modulation by a single frequency. The instantaneous phase of the analytic
signal is given by

¢ (t) = 2wf,t + Bsin2wf,t (2.58)
and differentiating this to obtain the instantaneous frequency, gives

f(t) = 27 dt(2r$t+63m2ﬂft)

=f, + Bf,cos2Tf,t (2.59)

The maximum frequency deviation A fis thus (8 f,,, and B ( = Af/f,) is known
as the “modulation index”. Fig.2.43 depicts the instantaneous phase and fre-
quency for a typical case, and illustrates 3 and Af.

The decomposition of a phase modulated analytic signal into a sum of
constant frequency phasors is somewhat complex, and involves Bessel func-
tions. Fig.2.44 (from Ref. 2.5) illustrates the (one-sided) amplitude spectra for
various values of modulation index (3. It can be shown that the relative ampli-
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Fig. 2.42. Analytic signal for amplitude modulation

tude of the carrier frequency component is given by J,(3), and of the n" order
sidebands by J,((3), this being a Bessel function of the first kind, of order n and
argument (.

It is seen from Fig.2.44 that for 8 < 1 most information is contained in the
first two pairs of sidebands, and for 8 << 1 only one pair of sidebands is
required. It is interesting to examine these two cases in more detail, as they
give considerable insight into the interaction with amplitude modulation.

Fig.2.45(a) shows the amplitude modulation case of Fig.2.41, in a coordinate
system rotating with the (positive) carrier frequency component f, (i.e. multipli-
cation by e”27 ol or subtraction of frequency f, from all components in the
spectrum). As before, the vector sum of the upper and lower sideband phasors
is always in line with the carrier phasor.
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Fig. 2.43. Analytic signal for phase and frequency modulation

If, as illustrated in Fig.2.45(b), the phase of one of the sidebands is reversed,
they will now add up to give a phasor of sinusoidally varying amplitude at right
angles to the carrier component. The resultant (hypotenuse) formed by vector
addition with the carrier will thus to a first approximation have roughly constant
amplitude, but sinusoidally varying phase around the carrier. This model of
phase modulation, with only one pair of sidebands, will obviously only be valid
for phase deviation 8 << < 1. For larger values of 3, for example 1 radian, it is
necessary to add higher order sidebands to compensate for the varying length
of the hypotenuse. This is illustrated in Fig.2.46, where the actual values of
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Fig. 2.44. Amplitude spectra of sidebands for frequency modulation with vari-
ous values of modulation index (3
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Fig. 2.45. Comparison of phase relationships of sidebands for amplitude and
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Fig. 2.47. Restriction of extent of sidebands for a single carrier component

J,(1), J4(1) and J, (1) have been used in a graphical construction of the resultant
phasor, using up to second order sidebands. Over a time period corresponding
to a quarter revolution of the first order sidebands (of length J;(1)), the second
order sidebands (of length J,(1)) rotate a half revolution. A;,, A and Ag
represent the length of the resultant (using only two pairs of sidebands) for
angular displacements of the first order sidebands of 0, 45, and 90deg, respec-
tively. In the figure it is seen that they compare very favourably with the
constant amplitude vector (represented by the circle segment, the “true locus”)
which results from including all sidebands.
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It is thought that this example illustrates how the sidebands from pure
amplitude modulation, or pure phase modulation, would interact in the more
general case. Even though either, in isolation, gives symmetrical sideband
patterns, the phase relationships on either side of the carrier are different, often
giving reinforcement on one side, and cancellation on the other.

It will also be appreciated that the use of analytic signals to model amplitude
and phase modulated signals is only simply applicable when the modulation
sidebands do not overlap over zero frequency, as illustrated in Fig.2.47. In
practice this means that for amplitude modulation, the carrier frequency must
be greater than the highest modulating frequency. For frequency modulation it
must be greater than both 4f,, and 2 Af (see Fig.2.44), where f,, is now the
highest modulating frequency, and Af is the maximum frequency deviation
corresponding to the maximum modulating signal amplitude. For combined
amplitude and frequency (or phase) modulation, the lowest sideband from the
phase modulated part (e/?®)) must be higher than the highest frequency in the
amplitude modulation signal (A(t)).
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3. FILTER ANALYSIS OF STATIONARY SIGNALS

The classical method of obtaining the frequency spectrum of an electrical
signal is to pass it through a number of analog filters with different centre
frequencies (or one filter whose centre frequency is moved over a frequency
range) and measure the transmitted power at each frequency. This subject is
thus treated first, even though FFT techniques (see Chapters 4, 5, 6, 7, 8) are
currently more important, in particular for constant bandwidth analysis. Analy-
sis using filters (including digital filters) still has advantages for constant per-
centage bandwidth analysis.

With the filter fixed at one centre frequency, its output will be the result of
convolving the input signal with the filter impulse response. In the frequency
domain this corresponds to a multiplication of the two (complex) frequency
functions. Thus the transmitted signal will have an amplitude spectrum equal to
the product of the two individual amplitude spectra and consequently a power
spectrum (i.e. amplitude squared) equal to the product of the two power spectra
(Fig.3.1). At the same time the phase relationships of the various signal compo-

Amplitude

Filter amplitude
spectrum [H(f)|
(Power spectrum IH(f) [2)

Input signal

1 amplitude

spectrum |F(f) |

(Power spectrum IF(f)[2)

Transmitted signal amplitude
spectrum [F(f)] x IH(f)!
(Power spectrum IF(f)12 x IH(f)[2)

=

f 770285

Fig. 3.1. Amplitude and power spectra for a filtered signal
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nents will be modified by the filter, but this has no influence on the transmitted
power.

Fig.3.2 shows a typical analyzer system in simple block diagram form. In
order to obtain a complete spectrum the filter centre frequency must be
stepped or swept over the frequency range of interest, and the rate at which
this can be done is determined by the delays which arise in each of the major
components, viz. filter, detector and recorder. Accordingly, each of these will
be considered in detail, inciuding a discussion of any practical details which
can influence the results.

Signal Recorder
— Filter Detector or
in Display

770286

Fig. 3.2. Block diagram for a basic analyzer system using filters

Originally, all three elements were analog, but recent years’ development in
digital techniques has led to a situation where it is often preferable to use
digital filters and detectors. In this case the signal is analog-to-digital (A/D)
converted at the input, giving a continuous stream of digital samples. The
digital filter receives the sequence of input data values, carries out some digital
operation on them and outputs a corresponding sequence of digital values
which are filtered in some way with respect to the input (Fig.3.3). In fact the
discussion will be limited to so-called “recursive digital filtering”. In contrast to
FFT, which operates on whole blocks of data at a time, recursive digital filtering
is a continuous process and for every input data value an output data value is
obtained. In this way, digital filtering is similar to analog filtering, and in fact it is

I
N oA 1 Digital Filter

Input sequence U .‘; Output sequence

770470

Fig. 3.3. Input to and output from a digital filter
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possible to design digital filters with properties similar to those of virtually any
practical filter. It is even possible to design digital filters which are not physical-
ly realisable in analog form, but these generally have undesirable properties
and will not be considered here.

Hence, most of the discussion in this chapter will apply equally to analog and
digital filtering. Section 3.4 discusses the special considerations applicable to
analog analysis, and Section 3.5 the special considerations applicable to digital
analysis. Chapter 3 is limited mainly to analysis of stationary signals, since
analysis of transients and non-stationary signals are treated in Chapters 5 and
6, respectively. These chapters will, however, make reference to properties of
filters, detectors and recorders as discussed in the following.
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Fig. 3.4. Difference between a constant bandwidth analyzer and a constant
percentage bandwidth analyzer
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3.1. FILTERS

A basic choice to be made is between constant absolute bandwidth and
constant relative (percentage) bandwidth where the absolute bandwidth is a
fixed percentage of the tuned centre frequency. Fig.3.4 compares these two
alternatives on both linear and logarithmic frequency scales and illustrates one
of the most fundamental differences between them.

Constant bandwidth gives uniform resolution on a linear frequency scale and
this, for example, gives equal resolution and separation of harmonically related
components and this will facilitate detection of a harmonic pattern (Fig.3.5).
However, the linear frequency scale automatically gives a restriction of the
useful frequency range to (at the most) two decades as is evident from Fig.3.4.

Constant percentage bandwidth, on the other hand, gives uniform resolution
on a logarithmic frequency scale and thus can be used over a wide frequency
range of 3 or more decades (Fig.3.4.). Another feature of constant percentage
bandwidth is that it corresponds to constant Q-factor (amplification ratio of
resonance peaks) (Fig.3.6). It is thus both natural and efficient to analyze
spectra dominated by structural resonances on a logarithmic frequency scale
with a constant percentage bandwidth somewhat narrower than the narrowest
resonant peak.

Other grounds for using a logarithmic frequency scale (though not necessar-
ily constant percentage bandwidth) are:

a) Small speed changes in, say, a machine only give a lateral displacement of
the spectrum, thus simplifying direct comparison.
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Fig. 3.5. Vibration spectrum having many harmonically related components
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Fig. 3.6. Relationship between the amplification factor Q and the relative band-
width b

b) Certain relationships can most easily be seen on log-log scales such as for
example, integration, which gives a change in slope of —20 dB/decade and
thus means that constant velocities and displacements are represented by
straight lines on an acceleration vs. frequency diagram.

It is worth paying particular attention to two special classes of constant
percentage bandwidth filters, viz. octave and third octave filters since these are
widely used, in particular for acoustical measurements. The former have a
bandwidth such that the upper limiting frequency of the passband is always
twice the lower limiting frequency, resulting in a bandwidth of 70,7%. This can
be derived as follows:

If f, = lower limiting frequency

f, = upper limiting frequency
f, = nominal centre frequency
Then f, = 2f,

and f, = the geometric mean = Vf, - f, = y2fZ = }2 f,
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The absolute bandwidth = f, - f, = f,

. . fu - fl
and the relative bandwidth = 5
o
f f
Ao o 707%
fo V21, V2

Internationally standardized centre frequencies for octave filters are laid
down in IEC Recommendation 225 which specifies a set of contiguous filters
based on a reference centre frequency of 1000 Hz.

Thus it can be seen that it is possible to cover 3 decades in frequency with 10
octave bands ranging from 22,5 Hz (lower limiting frequency for 31,5 Hz centre
frequency) to 22,5kHz (upper limiting frequency for 16 kHz centre frequency).

Third octave filters are obtained by dividing each octave band into three
geometrically equal sub-sections, i.e. f, = 2" f,and by coincidence this is equal
to one-tenth of a decade since

logy, (2'%) = 13logy, (2) = /3 - 0,3 = 0,1 = 1110 logyo (10) = logy, (10''0)

By the same procedure as for octave filters, the percentage bandwidth of
third octave filters can be derived as:

21/3 -1

W = 23,1%

3.1.1. Practical Filter Characteristic

As mentioned in Section 2.3 practical filters deviate from ideal filters in
several ways as illustrated in Fig.2.10. Provided the “ripple” within the pass-
band is kept within acceptable limits, the main characteristics of a practical
filter will be its bandwidth and selectivity.

The so-called “noise bandwidth” of a filter has already been defined in
Section 2.3 as the width of an ideal filter which transmits the same power from a
white noise source, for the same reference transmission level in the passband.
This definition is most relevant when dealing with random signals, since results
derived for ideal filters are then generally applicable to practical filters with the
same noise bandwidth.

Another bandwidth which can be associated with a filter is its “3dB band-
width” and this is simply the width of the power transmission characteristic at
the “3dB points”, which as their name implies lie 3dB below the nominal (unity)
amplification (Fig.2.10). It happens that this is often very close to the Noise
Bandwidth and since it is much more easily measured, it is commonly used. The

83



3dB bandwidth is perhaps most relevant when dealing with deterministic sig-
nals, since it gives information about how well sinusoidal components can be
separated. Only filters with a relatively poor selectivity will have a 3dB band-
width substantially different from the noise bandwidth.

The bandwidth of a filter gives information as to its ability to separate
components of approximately the same level. The selectivity indicates its ability
to separate components of widely different levels. The most basic parameter
indicating selectivity is known as the “Shape Factor”. This is normally defined
as the ratio of the width of the filter characteristic where the attenuation of the
flanks is 60dB, to its 3dB bandwidth (Fig.3.7). In some cases, such as where the
dynamic range is in any case less than 60dB, terms such as “40dB Shape
Factor” may be used to represent the equivalent factor obtained using the
breadth of the characteristic at 40dB attenuation (Fig.3.7). Shape factor is
normally used for constant bandwidth filters which have a characteristic which
is symmetrical on a linear frequency scale, but it could be applied more
generally.

By
o L {
3dB
B
Shape Factor = 90
B3

20dB [
a Bao
o 40 dB Shape Factor =_"°
S 8
2 3
®
3
5 Bgo
£
<

40 dB}

Bso
60 dB |
Frequency — 740817

Fig. 3.7. Shape factor
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Fig. 3.8. Octave selectivity

For constant percentage bandwidth filters, however, which have a character-
istic which is symmetrical on a logarithmic frequency scale, it is more common
to use “Octave Selectivity”, which gives the attenuation of the filter characteris-
tic one octave on either side of the centre frequency (Fig.3.8).

3.1.2. Filter Response Time

When a signal is suddenly applied at the input of a filter, it takes some time
before the latter responds. If the signal is sinusoidal and has a frequency within
the passband of the filter, then the output will finally be a sinusoid of the same
frequency and with the same amplitude as the original (assuming the amplitude
characteristic has an amplification of 1 within the passband). The time required
for the amplitude to approach its final value, however, is of the order of 1/B
where B is the filter bandwidth. In principle, the total response time has two
components, a “dead time” dependent on both the bandwidth and the number
of poles in the filter circuit, and the “rise time”, dependent on the bandwidth
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only. Most practical filters have either four or six poles, and the response time
can be taken to a first approximation as the reciprocal of the bandwidth.

This may be expressed in the form

BT, ~ 1 (3.1)

where Ty = filter response time.

Note that this may be modified as follows

(1;) (fTR) ~ 1
i.e. bng ~ 1 (3.2)

where b = relative bandwidth,
ng = number of periods of frequency fin time Ty
eg. for b 1%, ng will be approx. 100 periods, etc.

Filter Input Signal
0|

Filter Response
O

Time—

740328

Fig. 3.9. Typical filter response from a /3 octave filter

86



Thus, Equation (3.1) will be most applicable to constant bandwidth filters,
while Equation (3.2) is most applicable to constant percentage bandwidth
filters.

These relationships may be thought of as another manifestation of the physi-
cal requirement that a measurement with bandwidth B requires a measurement
time of at least 1/B.

Fig.3.9 shows the response of a typical /3-octave filter to a suddenly applied
sinusoid. Since the bandwidth is 23,1% one would expect the response time to
be 4,3 periods, whereas it is seen to be actually of the order of 5 or 6 depending
on the desired accuracy. This gives an idea of the order of accuracy of
Equations (3.1) and (3.2), although 1/3-octave filters, with their relatively steep
filter characteristic, probably represent an extreme case. Another mitigating
factor with swept frequency analysis is that the application of the sinusoid is not
sudden, as would be the case with an ideal filter, but more gradual as the filter
flank moves over the sinusoidal component (Fig.3.10). All-in-all, the equations
(3.1) and (3.2) give a good estimate of the delays introduced for the case of
swept filtration taking into account that they are used to select parameters such
as paper speed, which normally are varied in steps of 3:1.

3.2. DETECTORS

When a signal has been passed through a filter the output is still in the form of
an AC signal which varies continuously with time. It is necessary to measure the
power of this signal to obtain the desired frequency spectrum component. This

Sweeping Sinusoidal
filter component
characteristic

I

/ Filter starting to
| respond even before
|

component lies in
[

the passband

—=
Frequency
770287

Fig. 3.10. Gradual signal application with a sweeping filter
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can be done mathematically by squaring the instantaneous value of the signal
to obtain the instantaneous power and then integrating this over a defined time
interval (the averaging time) to obtain an average value. The longer the averag-
ing time, the smaller will be the variations in this average value, but the longer it
takes to obtain the result. it is often desired to extract the square root of this
mean square value to give the Root Mean Square (RMS) amplitude, since this
has the same dimensions as the input signal. It also gives the practical advan-
tage that the same output voltage range represents twice the dB range and thus
gives a wider dynamic range in general.

Finally, it may be desired that the Mean Square or RMS signal be logarithmi-
cally converted to give a result in dB.

All these functions can be performed by electronic circuits known as detec-
tors, giving a result with a high degree of accuracy with respect to the theoreti-
cal value.

3.2.1. Squaring

All high quality (so-called “true RMS”) detectors square the input signal in
one way or another. On the other hand, so-called “averaging detectors” per-
form only a rectification (as an approximation to squaring) and then average the
rectified signal, but although the relationship between the “average” and “RMS”
level is well-known for a sinusoidal signal, the average value for a more
complex signal depends on the phase relationships between different frequency
components, whereas the RMS value does not.

For many years B&K utilised the “Wahrman” detector, named after its
inventor, which achieves squaring of the (rectified) signal by means of a charac-
teristic whereby the parabola representing the squaring relationship is approxi-
mated by a number of straight lines. Fig.3.11 illustrates a number of such
parabolae for a typical detector, along with the straight lines which approximate
them. The reason for the number of different parabolae is connected with
square root extraction (see Section 3.2.3) and will not be gone into here; instead
consideration will be limited to a single parabola which corresponds to a given
RMS level. For a given parabola, it will be seen that the larger the instantaneous
level of the input signal, the further out along the parabola one is working, and
that beyond the last breakpoint in the approximating curve the more will be the
deviation between the true squared value and the value obtained from the
circuit. The ratio of peak to RMS level of a signal is known as its “crest factor”,
and it will be seen that the more break points there are in the approximating
curve, the higher will be the crest factor which can be accommodated. As an
example, 4 breakpoints give an accuracy within 1/2dB for crest factors up to 5.

88



Output
Current

-18dB f —12dB —6 dB 0dB PARABOLA

Input

Voltage -

172159/1

Fig. 3.11. Straight-line approximations to the square-law parabolae

In most newer instruments another type of detector known as an LMS
(logarithmic mean square) detector is used. This makes use of the logarithmic
characteristic of certain diodes to logarithmically convert the input signal.
Squaring is achieved by amplifying the log converted signal by a factor of 2 and
mean square averaging carried out in a part of the circuit where the signal has
been exponentiated (antilogarithmically converted). The output voltage is pro-
portional to the logarithm of the mean square value and can thus be scaled
directly in dB. In comparison with the Wahrman detector already described, it
can be said to have a true squaring characteristic, in general with a very high
crest factor capability.
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Fig. 3.12. Averaging as a low-pass filtration

3.2.2. Averaging
The purpose of averaging is to suppress the fluctuations in the squared

rectified signal from the squaring circuit, thereby obtaining an expression for
the mean power, which represents the mean square spectral estimate. It should
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be kept in mind that Fourier analysis assumes integration over ail time, which
can be represented by the following equation:
. 1 T/2
y= lim * f () dt (3.3)
T J-m2

T—co

where the bar represents the average value.

In practice, of course, it is necessary to limit the averaging time to a finite
value, and the effect of doing this will now be examined.

The effect on Equation (3.3) is to remove the limiting operation, and this
results in a finite fluctuation which gets smaller as the averaging time gets
longer. Suppression of the fluctuation can be considered as a lowpass filtration,
and Fig.3.12 illustrates why this is so for a typical sinusoidal component of
frequency f, and amplitude A.

Fig.3.12(a) shows the original cosine signal in both time and frequency do-
mains, while Fig.3.12(b) shows the result of squaring it. Note that the spectrum
of Fig.3.12(b), while obviously corresponding to the adjacent time signal, can
also be derived by convolving the spectrum of Fig.3.12(a) with itself (corre-
sponding to the multiplication of the cosine wave by itself). Thus, in the con-
volved spectrum there are only components when two or more delta functions
from the original spectrum line up, i.e. for displacements (f in Eqn. 2.30) of O,
+ 2f, and -2f,. Moreover, for displacement f = 0, two sets of delta functions line
up so that the total component is A%/4 + A%/4 = A%/2 whereas with f= * 2f, the
positive frequency delta function of one spectrum lines up with the negative
frequency of the other and the resulting component is thus only A?/4. The true
mean value is evidently the DC component in Fig.3.12(b), viz. A%/2, and this can
be obtained by lowpass filtering the squared signal. Fig.3.12(c) illustrates the
effect of filtering with two cut-off frequencies, the lower cut-off frequency giving
less ripple and thus corresponding to a longer averaging time. The relationship
between lowpass filter characteristic and effective averaging time will now be
examined in some detail.

From Equation (3.3) the short-term average of a function y(t) from -7/2 to
+7/2 is given by 1/T [TZ, y(t)dt, but more generally the running average ob-
tained at time t over the previous T will be seen to be

1
=7 [ vryar (3.4

as illustrated in Fig.3.13(a).

It will be found, however, that this can equally well be written as the (scaled)
convolution equation:
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1 )
vye=7 [Tvnigtt -1y ar (3.5)

where g(7) is defined as follows:

g(t) =1 0<7<T

g(r) =0 otherwise (3.6)

To make this more obvious, Fig.3.13(b), (c), (d) and (e) illustrate g(7), g(-7),
g(t-7) and y(7) g(t-7) respectively.

This convolution in the time domain corresponds to a multiplication in the
frequency domain of the respective Fourier transforms. The amplitude spec-
trum of the rectangular function g(t) defined in Egn. (3.6) is once again the well-
known | sin x/x | function with zeroes at multiples of 1/ T (Appendix A) and this
is found to be a low-pass filter characteristic with a slope of —20dB per decade
from a cut-off frequency of 1/wT. The positive half of this characteristic is
itlustrated on log-log scales in Fig.3.14. Note that the zeroes at multiples of 1/T
correspond to integral numbers of periods, and thus as pointed out in Section
2.2.1 integration over any integral number of periods completely removes the
fluctuation. Note also that the phase characteristic of the Fourier transform of
g(7) has no influence on the power transmission, only on the phase shift of the
ripple component.

Comparing Eqn. (3.5) with Eqn. (2.28) it will be seen that g(7) as defined in
Eqn. (3.6) can be interpreted as the required impulse response of a circuit to
give running linear integration over averaging time T. This would be extremely
difficult to realise in practice, and it is more common to use other electronic
circuits with a low-pass filtering effect. The most commonly used circuit is a so-
called RC circuit which has an impulse response defined by:

gty =0 —c0 <t<0

gity=e"° 0 <t<oo (3.7)

The employment of such a characteristic is referred to as “RC-averaging” or
“exponential averaging” since the impulse response is a decaying exponential
with most weight on the most recent part of the signal.

Fig.3.13(f) to (j) illustrate the resulting convolution for comparison with the
rectangular function of Eqgn. (3.6).
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Fig. 3.13. Running average as a convolution

(a) — (e) Linear weighting

(f) — (j) Exponential weighting
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Fig.3.15 also compares a typical RC characteristic with a rectangular one. It
has intentionally been scaled in such a way that T = 2RC, since with a peak
response equal to twice that of the rectangular response the area under the two
curves is the same, and thus the scaling will be the same for averaging of
stationary signals. More importantly, however, it is found that with T = 2RC, the
two filter characteristics in the frequency domain have the same asymptotic
lines and the same effective bandwidths. (See Fig.3.14.) The frequency re-
sponse corresponding to the exponential characteristic of Equation (3.7) and
drawn in Fig.3.14 is derived in Appendix A.

Thus, for an averaging time equal to several ripple periods (as will normally
be required in practice to reduce ripple to an acceptable level) it will be seen
that because the lowpass filter characteristics have the same asymptotic lines
the maximum ripple which can be obtained with linear averaging over time T, is
the same as that obtained by exponential averaging with an RC-time constant
such that

T,=2RC (3.8)
0 oo ‘\"“ <)
8 — i Half Bandwidth —
)_ . Effective Energy Half Bandwidtl 2
RC-Averaging \
5t v
Vi + (27 f x RC)?

2 = 1/4 RC = nfg/2

151

Linear Averaging _//
201 sin (f x T)
fxT
B 1
272t
251
—+ + +
0,1 0,2 1 05 1 2 3 4 5 6

Relative frequency
fx Torfx2RC

171342/1

Fig. 3.14. Comparison of linear and RC-averaging in frequency domain
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and thus Egn. (3.8) expresses the equivalent averaging time for an RC circuit
applied to a sinusoidal signal.

The ripple obtained for averaging over various numbers of periods (Ref.3.1)
is illustrated in Fig.(3.16).

When the signal coming from the filter is narrow band random noise (i.e. the
result of filtering wideband noise with a narrow band filter) it is found (Appendix
B) that the relative fluctuation (variance) of the result is proportional to the noise
bandwidth of the lowpass filter characteristic. It has already been shown that
for the | sin x/x | characteristic resulting from a rectangle of length T the noise
bandwidth is 1/T (see Appendix A) and in Appendix A it is demonstrated that
the noise bandwidth of the lowpass filter characteristic corresponding to expo-
nential averaging is also the same for the situation illustrated in Fig.3.14 (i.e.
with the same asymptotic lines) and thus Equation (3.8) also expresses the
equivalent averaging time for stationary random signals. In Ref.3.1 it is shown
that the same equivalence holds for trains of impulses (see Fig.3.17) so that it
can be taken that Equation (3.8) holds for all stationary signals.
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Fig. 3.15. Weighting curves for linear and RC-integration
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Fig. 3.16. Comparison of ripple components for linear and RC averaging of
squared sinewaves

Figs. 3.16 and 3.17 can be used for choosing averaging times for measure-
ments on deterministic signals, according to the desired level of ripple. For
random signals, the approach is somewhat different. In Appendix B it is shown
that when a narrow band noise of bandwidth B is applied to an RMS detector
with averaging time T, the relative standard deviation of the measured RMS
level is expressed by the equation:

1
€= — (for BT, > 1) (3.9)

2VBT, "
or, in decibel form ¢ = —i daB (3.9.9)

VBT 4

What this means is illustrated in Fig.3.18 for three different averaging times.
The result is itself a random variable but with a probability distribution which
lies closer and closer to the true value (i.e. that for infinite averaging time) the
longer the averaging time. Thus it is possible, though unlikely, for a shorter
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Fig. 3.17. Comparison of ripple components for linear and RC averaging of
pulse trains

averaging time to give a more accurate result, but on the other hand, by
integrating over the different regions of the probability density curve it can be
shown that for a single estimate there is a 68,3% chance of it being within + ¢ of
the true value, 95,5% chance of it being within + 2¢ and 99,7% chance of it
being within * 3e.

Note that the equivalence expressed in Equation (3.8) does not apply directly

to transient signals, but this point is discussed in some detail in the sections
dealing with the analysis of transients.

3.2.3. Square Root Extraction

In Section 3.2.1 it was explained how a squaring circuit could be used to
square an input signal x(t) such that the output y(t) could be represented by the
equation

y(t) = kx2(t) (3.10)
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Fig. 3.18. Influence of the averaging time on the error distribution

where k is a constant determining the size of the parabola. (Note that k is large
for a narrow parabola and vice versa.)

In Section 3.2.2 it was shown that it was possible using an RC circuit to obtain
the average of the squared signal. Thus:

y(t) = k x2(t) (3.11)

In the foregoing it was assumed that the parameter k was a constant, but it is
possible to feed back the circuit output signal in such a way that k is variable
and proportional to the reciprocal of the output level. The output will thereby be
modified, and will be called y’(t). Thus, k can be expressed in the form:

ki
k=— (3.12)
y’(t)

where Kk, is a constant
and y'(t) is a slowly varying function of time because of the
inherent averaging time.

Substituting this in an equation analogous to (3.11) gives
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x2(t)

") = 2
y(t) G0
or {y’(t)}? = kyx2(t)

and  y’(t) = Vkx2(t) (3.13)

a scaled approximation to the RMS value of x(t). It will be seen that a large RMS
level gives a small k factor and thus a wide parabola as illustrated in Fig.3.11.

The square root extraction properties of the variable-parabola Wahrman
detector are discussed in considerably more depth in Ref.3.1 where a more
rigorous derivation of its mode of operation is given.

For the LMS detector, as already mentioned, the output voltage is inherently
proportional to the logarithm of the mean square value. If a signal proportional
to the RMS value is desired, then the reverse of the process at the input is
carried out; the signal is first scaled down by a factor of two and then antilogar-
ithmically converted.

3.2.4. Logarithmic Conversion

The result will often be required on a logarithmic, or decibel, amplitude scale
and for other than LMS detectors this may be achieved in a logarithmic
conversion circuit at the analyzer output, or by using a logarithmic potentiome-
ter in the Level Recorder used to record the spectrum.

3.2.5. Detector Response

The effect of the finite detector response time on a swept frequency analysis
is to give both a delay and an error on peaks (and valleys) in a spectrum
compared with the true result which would be achieved with an infinitely slow
rate of sweep (see Fig.3.19). Moreover, in particular with RC averaging, there is
a limit to the steepness of slope which can be reproduced. These factors have
been studied in some detail in Ref.3.1 and the results are expressed in Figs.3.20,
3.21 and 3.22. Fig.3.20 expresses the errors which will be experienced at peaks
and valleys in a spectrum with running linear integration and RC-integration.
Fig.3.21 gives information as to the corresponding delays. Finally, Fig.3.22 gives
the delays which will be experienced at sloping areas in the spectrum. Here it is
seen that for RC-integration there is an asymptotic limit of 8,7 dB/2RC which is
the maximum rate at which the detector level can fall, and this will often govern
the rate of sweep.
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Fig. 3.20. Errors at peaks and valleys in a recorded spectrum
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Fig. 3.21. Delays at peaks and valleys in a recorded spectrum

3.3. RECORDERS

The level recorder used to record the spectrum can be the factdr which most
limits the sweep speed but its influence is greatly affected by whether it is
operating in “AC-recording” or “DC-recording” mode.

3.3.1. AC Recording

AC-recording is the case where the filtered AC signal is applied directly to the
recorder input. With the recorder set to “RMS”, the signal is rectified and
squared as for a normal detector but the averaging results entirely from the
response of the pen drive system which acts as a lowpass filter.

Fig.3.23 shows typical frequency response characteristics (Ref.3.2) for the
2307 Level Recorder (for 50mm paper), which illustrate the fact that higher
writing speeds give a higher cut-off frequency and thus a shorter averaging
time as would be expected from the discussion of Section 3.2.2. However, the
level recorder circuits have a non-linear characteristic because of feedback of
the error signal and also because of velocity limiting circuits which come more
and more into play the larger the fluctuations. Accordingly, the lowpass filter
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Fig. 3.23. Typical frequency response curves for “normal” setting of the Re-
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characteristics illustrated in Fig.3.23 are not general but apply to a particular
set of conditions, and in general there is a range of averaging times which apply
to a given set writing speed. This range is illustrated in Fig.3.24 which shows the
relationship between averaging time and writing speed for the B&K Level
Recorders Types 2305, 2307, 2306 and 2309 (i.e. the results are not identical for
all of them, but all tend to fall in the range indicated by the shaded area). In
general the lower values of averaging time apply for small fluctuations while the
higher values apply to large fluctuations.

Thus, in order to obtain a given averaging time with AC-recording, Fig.3.24
may be used to select an appropriate writing speed, and then the rate of sweep
may be limited by the error introduced on peaks and valleys or, more likely, by

being able to reproduce the steepest part of the spectrum with a limited writing
speed.

3.3.2. DC Recording

In DC recording, the RC-averaged RMS level is applied to the input of the
recorder which is then operated in “DC” mode. This requires of course that the
analyzer being used has a DC output with a sufficiently large dynamic range (i.e.

> 50dB) but this being the case it is generally better to use DC recording for the
following two reasons:
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Fig. 3.24. Averaging time vs writing speed

103



1) The averaging time is much better specified
2) It is generally possible to analyze faster with DC recording

Note that even in DC recording the pen system will still add an extra delay
corresponding to its inherent averaging time. However, with both 2305 and 2307
Level Recorders it is always possible to select a Writing Speed of 1000 mm/s
(100mm paper). From Fig.3.24 it is seen that this corresponds to an averaging
time of about 0,02 s and is thus negligibly small in comparison with the smallest
averaging time available for DC recording (0,1s). It is later shown (Section
3.6.2.7) that for this choice of writing speed the limitation on reproduction of
slopes is also determined by the averaging time and not by the recorder.

For the small portable Level Recorders Types 2306 and 2309 the maximum
Writing Speed is 2560mm/s (50 mm paper), but on the other hand, they are
usually used in combination with detectors with a minimum averaging time of
0,25s, and will still not limit sweep speeds in DC-recording.

For the newer portable recorder Type 2317, true RMS averaging detectors
are built-in, and so the recording can always be treated in the same way as a DC
recording with the appropriate averaging time.

3.4. ANALOG ANALYZER TYPES

Analog analyzers fall into the following broad categories:
(1) Discrete stepped filter analyzers
(2) Sweeping filter analyzers
(3) Parallel analyzers (real-time)

(4) Time compression analyzers (real-time)

Time compression analyzers have been included, even though they make use
of digital techniques, because the actual frequency analysis is carried out by
analog (heterodyne) techniques.

The mode of operation and other main features of each of these types will
now be discussed in more detail.

3.4.1. Discrete Stepped Filter Analyzers
Fig.3.25 shows a simple block diagram of a typical fixed filter analyzer. The

signal, after conditioning by an input amplifier, is applied in parallel to a bank of
filters, contiguous in the frequency domain, which together cover the frequency
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range of interest (Fig.3.26). A detector is connected sequentially to the various
filter outputs, and thus successively measures the output power in each fre-
quency band. Note that it is not necessary to wait for the filter response time,
only that of the detector.

Filter 1
Filter 2
Input Output
Input . Output P o
Amplifier Filter 3 Detector Amplifier
|
[ 7
|
|
I
|
l——J Filter N I
__I 740808

Fig. 3.25. Stepped filter analyzer
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Fig. 3.26. Frequency response of several adjacent 1/3-octave filters

The rate of stepping through the various filters is often controlled by and
synchronized with the speed of a connected level recorder, which can thus be
used to record the resulting spectrum. A typical 1/3-octave spectrum obtained in
this way is shown in Fig.3.27.
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A more up-to-date way of achieving the same effect as a filter bank is to have
only two filters whose centre frequencies can be changed by switching between
different electronic components. These two filters can be designed to step up
alternately in frequency in such a way that the signal is always being applied to
the next filter in the series while measurements are being made with the current
filter. This gives effectively the same result as a complete bank of parallel filters
in the sense that every filter has had adequate time to respond before the
detector is coupled in to its output.

3.4.2. Sweeping Filter Analyzers

For narrow-band analysis it is more common to use a single filter with tunable
centre frequency, as illustrated in block diagram form in Fig.3.28. The filter can
be either of constant bandwidth or constant percentage bandwidth type.
Fig.3.29 shows an analysis obtained in this way on the same signal as in
Fig.3.27, in the first place with the same bandwidth (23,1%) and then with 3%
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Fig. 3.27. Typical spectrum from a 1/3-octave filter set
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Fig. 3.28. Sweeping filter analyzer
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bandwidth. Instead of a number of spectrum estimates at discrete frequencies,
the resulting spectrum is now continuous in frequency. Each point on the curve,
however, represents an integration of the true spectrum over a frequency range
corresponding to the filter bandwidth. Considering only the positive frequency
components in both signal spectrum and filter characteristic, it will be seen that
the result is effectively a convolution of the two functions. (It may in fact be of
assistance in the interpretation of convolution to think of it as a sweeping
filtration of one function with the other reversed).

3.4.3. Real-time Parallel Analyzers

The two types of analyzers already discussed are known as sequential or
serial analyzers, since the analysis is carried out sequentially at each frequen-
cy. Thus, the assumption is implicitly made that the signal being analyzed is
stationary, because otherwise the analysis at one frequency would have no
connection with the analysis at another frequency (which is made on a different
section of the time signal). Sometimes a signal is forced to be stationary by
recording a section of it on a tape loop (or equivalent) which is played back
repetitively.

So-called real-time analyzers obtain the whole spectrum in parallel from the
same section of signal, and are thus not only able to follow changing signals,
but can also obtain the spectrum very much faster than sequential analyzers.
Perhaps the most direct way of performing such a real-time analysis is simply
to apply the signal to a parallel bank of filter/amplifier/detector channels as
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Fig. 3.29. Sweeping filter analysis for comparison with Fig.3.27
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Fig. 3.30. Real-time parallel analyzer

illustrated in block diagram form in Fig.3.30. Such an analyzer is called a
parallel analyzer and the first real-time 1/3-octave analyzers (e.g. B&K Type
3347) were made in this way. The speed with which the results are generated
makes it desirable to be able to view them on a continuously updated screen,
and also to be able to-transfer them rapidly in digital form to a computer or

other digital device. Fig.3.31 shows the B& K Analyzer Type 3347.

-

—_——

Fig. 3.31. Real-time /3-octave Analyzer Type 3347
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The analog parallel analyzer has now been superseded by analyzers based on
digital filtering, but its operation will be discussed where relevant since a
number are still in service.

3.4.4. Time Compression Analyzers

Time compression analyzers were the first successful real-time narrow band
analyzers, but have now been superseded by FFT analyzers (Chapter 4). The
time compression principle can be explained as follows:

Recording a signal at one speed (for example on a tape recorder) and playing
it back M times faster, allows the use of filters which are M times larger (for the
same relative resolution) and a corresponding reduction in analysis time. With a
tape recorder the signal must first be recorded in its entirety and then played
back, but in a time compression analyzer, the signal is continuously digitised,
and the samples entered into a digital memory, in between being played back at
high speed and analyzed using a high frequency heterodyne filter.

Samples come from the analog-to-digital (A/D) converter at a rate deter-
mined by the sampling frequency (typically 3 times the frequency range), and
are entered into the memory to replace the oldest values. With a 400-line
analyzer (e.g. the now obsolete B&K Type 3348) the memory contains 1200
samples, of which 3 are replaced for every cycle (when operating at the highest
real-time frequency). The digitised record is played back through a D/A con-
verter at least 400 times faster than it was recorded and analyzed in a frequency
range 400 times higher than the actual. One line out of the 400 is analyzed for
each playback, and thus after all 400 lines have been analyzed the complete
memory has been updated. For frequency ranges less than the maximum the
analysis still goes on at the same rate, but the memory is replenished corre-
spondingly slower, and there is a certain amount of redundancy in successive
spectra.

In contrast to FFT analyzers (Chapter 4) where all frequency lines are ob-

tained from the same data record, each line in a time compression analysis may
be obtained from a slightly different record.

3.5. DIGITAL FILTERING

As an introduction to digital filtering, the example will be taken of a simple
lowpass filter of the RC type such as is widely used for “exponential averaging”.
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Fig. 3.32. Schematic diagram for a single-pole filter

Fig.3.32 is a schematic diagram of such an averager, illustrating how it can be
made up of standard digital components, e.g. adders, multipliers, a delay unit
and a read-only memory (ROM) for storing the constants A and B.

For each sample period, the new data sample entering the filter is multiplied
by the constant A and added to B times the previous output value which has
been stored in a delay unit. Consider the example where constant A is 0,1 and
constant B is 0,9. In order not to change the amplification, the sum of A and B
must be unity, so that in fact there is only one independent parameter with
which the properties of the filter can be varied. This parameter can be related to
the equivalent averaging time. Note that the averaging time is defined only in
relation to the sampling period, which is the same as saying that the lowpass
filter cut-off frequency is only defined in relation to the sampling frequency (the
reciprocal of the sampling period).

Fig.3.33 illustrates the effect of carrying out the operations of Fig.3.32 on a
sampled squared sinusoidal signal. The input signal, varying between 0 and 1,
could be considered to be the output from a squaring circuit of a sinusoidal
signal of amplitude 1. It has somewhat fortuitously been sampled (4 times per
period) at the values 0, 0,5, 1,0 and 0,5 but since this obeys Shannon’s
Sampling Theorem (see p.30) no error will be introduced. It can for example be
checked that the RMS level of the samples over one period is the same as that
of the continuous sinusoid. Thus, the first sample (0,5) is multiplied by 0,1 and
added to 90% of zero, giving 0,05. The next sample (1,0) is also multiplied by 0,1
and added to 90% of 0,05 giving 0,145 and so on. It is seen that there is first a
period in which the filter output rises, but that finally the output value levels out
though with a small fluctuation (see Fig.3.33). The correct average is of course
0,5, but the output fluctuates about this with a ripple sampled at the four values
0,472, 0,475, 0,525 and 0,528. These samples no longer correspond to the
peaks as with the original signal (because of a phase shift) but it can be
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Fig. 3.33. Effect of filter from Fig.3.32 for A = 0,1 and B = 0,9

calculated that the amplitude of the fluctuation is 0,0375 corresponding to
+ 0,3 dB. This agrees well with the result obtained from Fig.3.16 for the equiva-
lent analog detector. The RC-time constant in this case is approx. 10 sample
periods, giving an equivalent averaging time of 20 sample periods. The squared
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sinusoid was sampled 4 times per period corresponding to 8 times per period
for the original unsquared signal. Thus the averaging time corresponds to 2,5
periods of the original signal, and it is this which gives 0,3 dB ripple when
inserted in Fig.3.16.

3.5.1. The Z-transform

Although is it not intended to go into details, it may be useful to explain some
points of terminology which are often heard in connection with digital fllters
One of these is the so-called z-transform.

The z-transform is defined (Ref.3.3) as:

=2, gnatz™ (3.14)

n= -o

where z is a complex variable.

By making the substitution z = &/2'2!(a circle of radius 1) it will be seen that
Eqn.(3.14) reduces to that form of the Fourier transform which applies to
sampled time functions, viz. Eqn.(2.16), and the latter can thus be considered as
the z-transform evaluated on the unit circle (i.e. [z| = 1). Note that on the unit
circle, the sampling frequency f, (= 1/A t) gives z = ¢/>™ = 1, as do all multiples
of it, which is andther expression of the periodicity of the frequency spectrum
alluded to in Fig.2.6 part 3. Fig.3.34 illustrates this, and shows for example how
the Nyquist frequency fy is located at z = -1; angles from 0 to @ represent the
frequencies 0 to fy, while the angles from -7 (=7) around to O represent the
frequencies from fy to f,, or equally, the negative frequencies from —f, to zero,
because of the periodicity.

The z-transform bears the same kind of relationship to the discrete time
Fourier transform (Egn.(2.16)) as the Laplace transform does to the Fourier
Integral Transform (Eqn.(2.14)), but applies to discrete time sequences rather
than continuous functions. In particular, it has very similar properties with
respect to difference equations as the Laplace transform does with respect to
differential equations, in general reducing the solution of an N"-order equation
to finding the roots of an N™-order polynomial in the transform domain (Ref.3.3).

Those familiar with Laplace transform methods will remember that a filter
whose function is described by an N'™-order differential equation in general has
N poles in the Laplace domain, each one corresponding to the root of an N'"-
order polynomial which forms the denominator of the Laplace transform of the
impulse response (i.e. the transfer function) (Appendix C). The same applies to
the z-transform for the case of an N'"-order difference equation (which may be
an approximation to the differential equation or a system characteristic in its
own right).
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It is of interest to see how a delay corresponds to an integration, and the
simplest example of this is provided by the RC-lowpass filter already discussed.
The differential equation applicable to its characteristic is:

dh(t) _ _ h(t) (3.15)
dt RC ’

which says that the rate of fall of the capacitor voltage is proportional to the
voltage and inversely proportional to the RC time constant. As already given in
Eqn.(3.7) the solution to this equation is:
h(t) = e"¥FC (3.16)
for unit input.
The simple (backward) difference equation corresponding to Eqn.(3.15) may

be derived as:
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Ah_ <

At RC
o h(n)=h(n-1) _ _h(n-1)
At RC
iy At
h(n) = h(n- ==
giving (n) = h(n 1)[1 = (3.17)

This shows how the value of h(n) (i.e. the integration of dh/df) can be
obtained from the previous value h(n-1) making use of the constant A t/RC.
Thus a single integration involves one delay.

3.5.2. The General Multiple-Pole Filter

The difference equation equivalent to a 2nd order differential equation in-
volves two delays (i.e both h(n—1) and h(n-2) are required in order to calculate
h(n)), and in fact the general flow diagram for a 2nd order system (2-pole filter)
is as illustrated in Fig.3.35.
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Delay

Muitiplier Multiplier

Delay

Multiplier Multiplier

760110/1

Fig. 3.35. Generalised block diagram of a 2-pole recursive digital filter

It is possible to generate digital equivalents of all the well-known filter types
e.g. Butterworth, Chebyshev, etc. (Ref.3.4). Because of the periodicity of the
frequency function, they can never be exactly the same, but by careful design
the differences can be made negligible. Multiple-pole filters (generally required
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to achieve steep filter flanks) can be formed by cascading 2-pole sections, with
appropriate choice of coefficients.

One of the main advantages of a digital filter is that the same hardware can
be used to generate virtually any filter shape (with the same number of poles)
just by changing the filter coefficients used in the calculations. For example, it
is possible to change the same calculating unit from a bandpass to a lowpass
filter, or to change the centre frequency or bandwidth just by changing the filter
coefficients. Once decided, the filter coefficients completely determine the filter
properties, and for example these do not change with time; the filter never
needs trimming.

Digital filters are best adapted to logarithmic frequency scales and constant
percentage bandwith, in contrast to FFT which intrinsically gives constant
bandwidth on a linear frequency scale.

To illustrate these points, the design of the B & K Real-Time 1/3-octave Analyz-
er Type 2131 will be considered.

3.5.3. The Briiel &Kjaer Digital Frequency Analyzer Type 2131

The Digital Frequency Analyzer Type 2131 is depicted in Fig.3.36. Although
considerably more compact than the analog analyzer it replaced (the B& K Type
3347, see Fig.3.31), it has basically the same function, viz. producing averaged
1/3-octave spectra in real-time in the frequency range up to 20kHz. Its major
advantages, however, are that it has a larger dynamic range (display range
60 dB instead of 50 dB), lower limiting frequency 1,6 Hz as standard (instead of
20 Hz), a choice between octave and 1/3-octave bandwidth, a choice between
linear and exponential averaging (instead of exponential only) and a choice
between a range of constant averaging times and constant BT, products giving
constant statistical confidence (standard deviation of the error <05, 1 or
2 dB). There are other advantages, but the above are those which derive from
its construction as a digital filter, and it is that which is of interest here. The way
in which the advantages arise will become obvious from a consideration of its
mode of operation.

Before looking at the overall construction of the analyzer, it is of interest to
consider the design of the individual filter units. In place of the general 2-pole
diagram of Fig.3.35, they have a special schematic diagram as illustrated in
Fig.3.37. This has the obvious advantage that fewer adders and multipliers are
required, while by making use of the so-called “matched z-transform” it is still
possible to design equivalents of the well-known bandpass and lowpass filter
types. It will be appreciated that the three coefficients remaining provide the
required flexibility to determine both the resonant frequency and Q-factor for a
damped resonator, and to vary the overall amplification.
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Fig. 3.37. Block diagram of 2-pole digital filter used in the 2131
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Fig. 3.38. Block diagram of input and filter section of 2131

Fig.3.38 is a block diagram of the input and filter section of the 2131. It will be
seen that the signal, shortly after entry, is converted into digital form and from
then on all operations are digital. Before analog-to-digital (A/D) conversion, the
signal is first lowpass filtered with a 12-pole analog lowpass filter having its cut-
off at 27 kHz which is above the highest frequency of interest, viz. 22,4 kHz (the
upper limiting frequency of the 1/3-octave centred on 20 kHz). This is done to
avoid aliasing (section 2.2.4). The A/D converter used gives 12-bit resolution,
and this in combination with 15-bit calculations and 9-bit filter coefficients,
gives a resulting spectrum with more than 69 dB dynamic range. The sample
rate of the A/D converter is 66,667 kHz.

Each sample coming from the A/D converter is passed simultaneously
through a 1/3-octave bandpass filtering section and a lowpass filtering section.
In fact, each sample is passed through each section three times for the follow-
ing reasons:

1. 1/3-octave filtering. The 1/3-octave filter section consists of three 2-pole
filter units in series and for each pass, coefficients are used which give a 6-
pole Chebyshev filter of 1/3-octave bandwidth. For each pass, the filter
coefficients are changed so as to obtain successively the three 1/3-octave
centre frequencies in each octave (e.g. 20 kHz, 16 kHz and 12,5 kHz in the
highest octave). These three filter characteristics are illustrated in Fig.3.39.

2. Low-pass filtering. The low-pass filter section consists of two 2-pole filter
units in series. Thus, during the three passes used to obtain the three 1/3-
octave filtered values, it is possible to circulate the data value three times
through the lowpass filter section, achieving 12-pole lowpass filtration (in
this case, incidentally, a Butterworth filter was used). The cut-off frequency
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of the lowpass filter is one octave lower than the previous maximum fre-
quency content.

The reason for the lowpass filtration is that it makes it possible to discard
every second sample without losing any further information, i.e. once the
highest octave in frequency is filtered away it is quite valid to use half the
previous sample rate while still complying with Shannon’s sampling theorem
(see footnote p.30). These lowpass filtered samples with half the sampling
frequency can now be fed to the bandpass filter section, and since the filter
characteristics are defined only in relation to the sampling frequency, the same
filter coefficients will now give the three 1/3-octave filters one octave lower in

frequency (see Fig.3.39).
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Fig. 3.39. Filter characteristics vs. sampling frequency

In a similar manner, the same filtered samples can be fed back to the lowpass
filter section and again filtered to one octave lower, once again allowing each

second sample to be discarded, and so on.

It is possible to continue in this way for all lower octaves, thus obtaining the
complete 1/3-octave spectrum. This explains the presence of the multiplexers
at entry to both filter sections. These must keep track of where the next sample
to be filtered is located and where the result is to be placed. It will be found that
provided it is possible to process a sample from the A/D converter (i.e. in the
highest frequency octave) plus one other sample in each sample period, it is
possible to produce a parallel real-time spectrum for all octaves up to and
including the highest. The limitation at the low frequency end is not in calculat-
ing capacity, only in being able to store the results, and so in the 2131 the
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frequency range is limited to a little over 4 decades. The reason why this is
possible can be understood by reference to Fig.3.40. This is a table showing the
order of processing, at least of the first few samples in each octave, both in the
1/3-octave section and in the lowpass filter section. The lowpass filtered values
(with every second one discarded) are fed back to the next lower octave in both
filter sections. Considering the number of samples to be processed in each
octave, and calling the number in the 16 kHz octave M, the number in the 8 kHz
octave is M/2, in the 4 kHz octave M/4, and so on. Thus the total number of
samples to be processed in all octaves below the highest is M(1/2 + 1/4 + 1/8
+ o ) = M, i.e. the same as the number of samples in the highest octave
alone. Consequently, as shown in Fig.3.40, it is only necessary to process one
data value from the highest octave plus one other in each sample period.

This ability to timeshare efficiently when the frequency scale is based on
octaves is the major reason why digital filters are so well adapted to logarithmic
frequency scales and constant percentage bandwidth. Another results from the
fact that the filter characteristics are relative to the sampling frequency and
thus tend to be symmetrical and uniform on a logarithmic frequency scale, a
desirable property in constant percentage bandwidth filters. This question of
filter characteristic is discussed in some detail in section 3.5.4 since it repre-
sents one of the major differences from spectra generated originally by FFT
techniques and then converted to constant percentage bandwidth.

The operation of the analyzer can be converted to octave band filtering, once
again basically by changing the filter coefficients. Since only one filter is to be
calculated in each octave it is possible to recirculate the data values more than

BANDPASS FILTER
SAMPLING PERIOD NUMBER

B.P Filter
Octave |1 |2 |38 |4 |5f6}7 |89 10|11 ]12f13] 14 [ 15 | 16

16 kHz |1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
8 kHz 14 34 51 71 99 114 134 15¢
4 kHz 12 52 9 132
2 kHz 13 93
1 kHz 14
500 kHz 15

LOWPASS FILTER

L.P.Filter
Cut-Off Freq.

12kHz |11 |21 31 |41 |51 |61 |71 |81 |91 [109 [119 129 |13 |144 1549 161
6 kHz 12 32 52 72 9 112 132 152
3 kHz 13 53 93 132
1,5 kHz 14 94
750 kHz 15
375 kHz 16

Fig. 3.40. Operation of 2131 digital filter unit
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once through the bandpass filtering section. In the 2131, two passes are used (3
would have been possible) giving 12-pole filters of the Chebyshev type.

So far, only the actual filtering process has been considered, but it is impor-
tant to consider the averaging as well, since many of the advantages of digital
filters over competitive analyzers stem from the correct use of digital averaging
(correct in the sense that the sampling theorem is obeyed, and thus no informa-
tion is lost).

Linear averaging is achieved simply by adding together the squares of the
filter output samples? divided by the total number to be averaged. This number
is of course equal to the averaging time multiplied by the sample rate for the
octave in question. The averaged result is held and is logarithmically converted
into dB before display.

Exponential averaging is achieved as discussed in the early part of Section
3.5. The equivalent averaging time is based on the Eqn.(3.8) (i.e. T, = 2 RC) and
thus applies directly to stationary signals. As for linear averaging it is the
squared values of the filter output samples which are averaged, and the results
are converted to dB before display.

Averaging with constant standard error, which is available with exponential
averaging only, is achieved by making the averaging time in each octave
inversely proportional to the frequency so that a constant BT, product is
obtained for all frequencies (at least for the lowest 1/3-octave filter in each
octave; the two higher filters have the same averaging time and thus somewhat
higher BT, product). Since for constant percentage bandwidth a constant BT,
product corresponds to a given number of periods (cf. Eqn.(3.2)) in this case it
will correspond to a given number of samples (for constant sampling ratio i.e.
ratio of sampling frequency to filter centre frequency), and thus the number of
samples averaged will be the same in all octaves. Three values of BT, product
are selectable giving standard error ¢ < 0,5, 1 or 2 dB as desired (cf. Eqn.(3.9)).

3.5.3.1 1/12-octave Analysis

As an example of the flexibility of a digital filter such as the B&K Type 2131,
the case of its use for 1/12-octave filtering will be discussed.

As mentioned previously, the filter characteristic obtained from a digital filter
is determined entirely by the filter coefficients used in the calculations. These
can be chosen to give 1/12-octave bandwidth, and in fact in the 2131 these
extra coefficients are programmed as standard in the ROMs used for storing

§squared values are represented by 24 bits and sufficient bits are used in the calculations to avoid
overflow
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Fig. 3.41. Procedure for obtaining 1/12-octave spectrum in 4 passes

the coefficients (the storage space would otherwise have been unused). Howev-
er, since there is only calculation and storage capacity to calculate three filters
per octave at any one time, it is necessary to perform four separate analyses,
each time accessing three sets of filter coefficients corresponding to three of
the 1/12-octave passbands in each octave (see Fig.3.41). As will be evident
from Fig.3.41, the results from the 4 passes must be interleaved in the correct
order, and this is most easily done by a small computer. Fig.3.42 shows such a
1/12-octave spectrum produced by the 2131 in conjunction with a Tektronix
Calculator (connected via the IEEE 488 Interface Bus). Not only can the calcula-
tor control the changing of the coefficients for each pass, it also stores all
intermediate results and finally outputs the total 1/12-octave spectrum (sorted
into the correct order) on its own display screen with correctly calibrated axes.
Fig.3.42 was obtained as a direct copy of this displayed spectrum.

It should be emphasized that because of the necessity to make 4 passes, the
operation of calculating 1/12-octave spectra is no longer real-time, and thus
either the input signal must be stationary or exactly the same data must be
recirculated 4 times.
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Fig. 3.42. 1/12-octave spectrum produced by 2131 in conjunction with a Tek-
tronix calculator

3.5.4. Filter Characteristics

In general, digital filters are designed to resemble one of the wellknown
classes of analog filters, e.g. Butterworth, Chebyshev, etc., but as mentioned
previously there will always be some slight deviation for the following reasons:

1. Because of the periodicity of the frequency characteristics, there is some
overlapping around the Nyquist frequency (aliasing) as illustrated in
Fig.3.43. There is also a slight distortion of the characteristic (when the
matched z-transform is used) but by careful design this can be made
negligible. The overlapping around the Nyquist frequency can obviously be
reduced by increasing the “sampling ratio” and for example in the 2131, itis
only the highest 1/3-octave filter in each octave which is noticeably affected
by folding. On the other hand, increasing the sampling ratio is undesirable
since it gives a proportionate reduction in the real-time frequency capability
and moreover if carried too far gives rise to stability problems. With the
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Fig. 3.43. Overall filter characteristics including lowpass filtration

2131, the sampling ratio varies from 3,3 for the highest 1/3-octave in each
octave to 5,3 for the lowest.

2. The folding is counteracted by the lowpass filter characteristic of the antia-
liasing filters, which thus have an influence on the overall characteristics.
The lowpass filter is the same, however, for all three 1/3-octave filters in
each octave and thus has a different effect on their filter characteristics (see
Fig.3.43).

It must be kept in mind that the deviations referred to above are very minor in
nature, and in fact are only detectable from about —-30 dB with respect to the
reference level in the passband. The filters are well within the requirements of
the most stringent standard specifications (e.g. Fig.3.46).

In this connection, it is worth making comparisons with another common
method used to obtain constant percentage bandwidth filtration by digital
means. This involves converting from a linear frequency scale constant band-
width spectrum (obtained by FFT methods) by integrating over the appropriate
number (and fractions) of lines in the spectrum. The integrated bandwidth must
always be greater than that of the original spectrum for the result to be valid.
With respect to filter characteristic, it will be seen from Fig.3.44 that because
the original filter characteristic is symmetrical on a linear scale, the integrated
characteristics will be as well, and thus will be unsymmetrical on a logarithmic
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frequency scale. Moreover, over one decade the relative steepness of the flanks
of filters obtained in this way (i.e. effectively the shape factor) will vary by a
factor of 10:1. It is quite common to convert one decade at a time, and thus
where two successive decades are fitted together there will be a sudden change
of 10:1 in filter flank steepness (see Fig.3.45) even though both might be within
the tolerances specified for a particular filter class (see for example Fig.3.46)
which in reality are often quite wide.

It will be appreciated that this sort of variation in filter characteristic is at

dB Set of constant bandwidth Combined filter characteristic
0 filters on a linear frequency scale from integrating over 10 adjacent filters
/ |
|
J (Linear) frequency o
t >
| 770474

Fig. 3.44. Effect on filter characteristic of combining filters
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Fig. 3.45. Variations in filter characteristic with synthesized constant percent-
age bandwidth filters
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Fig. 3.46. 1/3-Octave filter specifications over 20 dB and 80 dB ranges

least an order of magnitude greater than that discussed in connection with
digital filters, and is undesirable in cases where the filter flanks can have an

effect on the results, e.g. for steeply sloping spectra.

The differences can be made considerably smaller by synthesizing FFT spec-
tra obtained with intervals of one octave (rather than one decade) in frequency,
and this procedure is a viable alternative (to digital filtering).

3.6. PRACTICAL ANALYSIS OF STATIONARY SIGNALS

The analysis of stationary signals, both deterministic and random, will now be
discussed with respect to choice of analysis parameters for each of the types of
analyzer discussed in Sections 3.4 and 3.5.

3.6.1. Stepped Filter Analysis (1/3 octave and octave)

In this case, the analysis bandwidth is determined by the analyzer, and the
only choice to be made is between 1/3 octave and octave. The discussion here
will refer to 1/3 octave unless otherwise specified.
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The parameters to be chosen are the following:

1. Averaging time, T,

2. DC or AC recording

3. Recorder writing speed
4. Recorder paper speed

Unless otherwise specified, it will be assumed that B &K standard calibrated
paper of width 100 mm is used, on which 1/3 octave corresponds to 5mm in the
longitudinal direction, and that the recorder is a B& K Level Recorder Type 2307
or 2305.

3.6.1.1. Averaging Time T4

For deterministic signals, the major requirement is that ripple be reduced to
an acceptable level. Where only a single sinusoidal component is included in
the bandwidth, Fig.3.16 indicates that the ripple will be reduced to less than
+1/4 dB for

T, = (3.18)

~- W

where f is the frequency of the single component. Where there are several
sinusoidal components within the bandwidth (and this is quite likely with 1/3-
octave analysis) then Eqn.3.18 can still be used, with f interpreted as the
minimum separation of any two components, since this will represent the lowest
beat frequency’. When there are a large number of sinusoidal components in
the bandwidth such as is likely at high frequencies, then strictly speaking the
same considerations still apply but the situation becomes similar to the case of
random signals and it might be simplest to treat the signal as random.

For random signals, Eqn.(3.9) can be used to select a suitable value for T,,
depending on the desired accuracy. Table 3.1 summarizes the value of standard
deviation (in dB) obtained over a range of averaging times and frequencies. It
will normally be the lowest frequency of interest which governs the selection of
averaging time, but it will be noted that for every half decade increase in
frequency it is possible to reduce the averaging time by a factor of {10, the
normal steps in B & K measuring amplifiers. The newer filter sets can control the
changes in averaging time automatically.

For octave-band filters, the bandwidth is of course 3 times larger, so that
averaging times from Table 3.1 should be reduced by a factor of 3 (one step).

§The beat frequency will not be doubled by squaring (as for a single component) and therefore it
may be found necessary on inspection to increase T, even further
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Std error for GCentre
T, Frequency (Hz)
2 6,3 20 63 200 630 2k 6,3k 20k
0,1s 1,2 0,7 0,4 0,2
0,3 1,2 0,7 0,4 0,2
1 12 07 04 02
3 1,2 0,7 0,4 0,2
10 1,2 0,7 0,4 0,2
30 1,2 0,7 0,4 0,2
100 0,7 0,4 0,2
300 0,4 0,2

T01038GB0O

Table 3.1. Standard error (dB) for 1/3-octave filters in combination with various
averaging times

3.6.1.2. DC or AC Recording

As mentioned in Section 3.3.2 it is generally better to use DC recording where
this is possible, but where no DC output is avaliable from the analyzer (or where
it has a dynamic range less-than 50 dB) it is necessary to use AC recording.

Where one has a choice, it may be worth checking both possibilities with
respect to paper speed as in some cases AC recording is just as fast, and may
be preferable for another reason (e.g. to obtain averaging times less than 0,1s).

3.6.1.3. Writing Speed

For DC recording it is possible to select a writing speed of 1000mm/s
(100mm paper) and this is always advisable with the Level Recorder Type 2307.
With the Level Recorder Type 2305 it may be preferred to use a lower writing
speed (to reduce hum which results from the low chopper frequency). The effect
of using 315mm/s will be very small, even with the lowest averaging time of
0,1s.

For AC recording, the writing speed will be determined by the required
averaging time, and can be selected using Fig.3.24.

3.6.1.4. Paper Speed

The selection of a suitable paper speed will be described for the case where it
is the level recorder which controls the rate of stepping between filters. Newer
filter sets control the rate of stepping in proportion to the averaging time which
is changed automatically, but because the operation in that case is virtually

127



automatic, it does not require operator intervention.

In the first-mentioned case, the paper speed should be chosen such that the
pen can attain the correct level for each 1/3-octave band and remain at that
level for a while before shifting to the next filter (see Fig.3.47).

Recorded
spectrum

Theoretical
spectrum

-

Frequency

770289

Fig 3.47. Typical recorded spectrum

For DC recording, it will normally be the rate of fall of the detector which
limits the sweep rate, and from Fig.3.22 of Section 3.2.5 it will be remembered
that this has a maximum of 8,7 dB/averaging time.

Table 3.2 gives suitable paper speeds for the normal range of averaging
times, based on the assumption that the time required to sweep over a band-
width is equal to 5 averaging times. With B&K’s steepest filter characteristics
this means that the step between filters will normally be attained in less than
2mm (i.e. 40% of the bandwidth), and in the very worst case of a single
sinusoidal component located between two filters, within 75% of the bandwidth.
This worst case situation is illustrated in Fig.3.48.

Averaging Time 01 | 03 | 1 3 | 10 | 30 | 100 | 300
Ta(s)
Paper speed for
DG recording (mm/s) 10 3 1 0,3 0,1 0,03 0,01 0,003

T01043GB0

Table 3.2. Paper Speeds for DC recording
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Fig 3.48. “Worst-case” situation involving the largest possible step between
adjacent filters

In cases where the spectrum is known to be relatively flat, with a maximum
fall of approx. 5 dB between adjacent filters, it will be possible to increase paper
speed by one step (i.e. a factor of approx. 3). The time taken to sweep over one
bandwidth will then be approx. 1,6 times the averaging time, and this is about
the minimum time required for the detector to respond, even on peaks.

For AC recording, the same basic considerations apply, except that now it is
the writing speed rather than the averaging time which will determine how
rapidly the recording pen can adjust to a new level. Table 3.3 gives suitable
paper speeds for the range of writing speeds available. Once again these may
be increased by one step when the spectrum is known to be relatively flat.

Writing Speed (mm/s) 4 8—16 | 31,56—50| 80— 125 200 — 2000
(100 mm paper)
Paper Speed for ; "

AC recording (mm/s) 0.1 0,3 1

T01044GBO

Table 3.3. Paper Speeds for AC recording
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For octave-band analysis, with either DC or AC recording, it is generally best
to use the same values as for 1/3 octave, because the filter flank steepness is
often the same.

There is a chance, however, that the values recommended here can be
increased by one step (in particular for octave analysis) and it is one of the
features of stepped frequency analysis that this point can be checked by visual
observation of the spectrum. This is not the case in general with swept frequen-
cy analysis.

3.6.2. Swept Filter Analysis

In this case there are several more factors to take account of, and in the most
general case it will be necessary to consider the following:

(1) Constant vs. constant percentage bandwidth

(2) Linear vs. logarithmic frequency scale

(3) The actual bandwidth, in Hz or percentage

(4) Averaging time

(5) Dwell time per bandwidth (which determines the sweep rate)
(6) Recorder writing speed

(7) Recorder paper speed

These will each be discussed in turn.

3.6.2.1. Constant vs. Constant Percentage Bandwidth

From the discussion in Section 3.1 it will be appreciated that constant band-
width is most appropriate in the following situations:

1. Where the frequency scale is linear.

2. Where the spectrum is dominated by harmonics or other discrete compo-
nents (i.e. deterministic signals).

3. Where comparisons are to be made with inherently constant bandwidth
analysis (e.g. FFT or time compression).
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and that constant percentage bandwidth is most appropriate in the following
situations:

1. Where the frequency scale is logarithmic.

2. Where the signal is stationary random and the spectrum dominated by
resonance peaks. Note that bandwidth compensation will be required if the
result is to be calibrated as a spectral density. See Section 3.6.2.9. This
compensation may be included in the analyzer as a power attenuation factor
proportional to the bandwidth.

3. In order to account simply for fluctuations in machine speed, either within
one record or between several records.

4. Where constant percentage bandwidth is specified, as is often the case
with, for example, acoustic measurements or whole body vibration.

5. Where comparisons are to be made with inherently constant percentage
bandwidth analyses (e.g. 1/3-octave).

In some cases it is possible to approximate constant percentage bandwidth
by a series of constant bandwidth filters which step up automatically, for
example, by a factor of \/ﬁ for every half decade in frequency. Note that in a
broadband spectrum this would result in a sudden increase in spectrum level of
5dB for every filter change, but that the step can be eliminated by using
bandwidth compensation. At the same time this would automatically give a
result in terms of spectral density. It is necessary, however, that the analyzer
bandwidth is always less than that of any peaks in the signal spectrum, in order
for the result to be valid.

3.6.2.2. Linear vs. Logarithmic Frequency Scale

From the discussion in Section 3.1 it will be appreciated that a linear frequen-
cy scale is most appropriate in the following situations:

1. Where the spectrum is dominated by harmonically related or other equi-
spaced discrete components such as sidebands (and where constant band-
width is used).

2. Where the frequency range is restricted.

3. Where comparisons are to be made with analyses which inherently have a
linear frequency scale (e.g. FFT, time compression).
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while a logarithmic frequency scale is most appropriate in the following situa-
tions:

1. Where constant percentage bandwidth filters are used.
2. Where a wide frequency range is to be covered.

3. In order to eliminate the effects of minor machine speed fluctuations by a
lateral shift of the spectrum.

4. In order to emphasize relationships which are linear in log-log representa-
tions, e.g. integration (-20 dB/decade) and bandwidth compensation
(-10 dB/decade).

Note that some analyzers (e.g. B& K Type 2120) employ a hyperbolic frequen-
cy scale which repeats for each half decade.

3.6.2.3. Choice of Bandwidth

It is found that the time required for a swept frequency analysis is proportion-
al to the square of the reciprocal of the bandwidth, so it is important that the
latter be chosen as large as possible while still giving adequate resolution.

-

Minimum
Separation
3B

50 dB
60 dB “‘worst case’

58 /
/ .

Frequency

770291

Fig 3.49. Minimum separation of sinusoidal components for filter shape factor 5
(typical)
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For deterministic signals, as discussed in Section 2.4.1, it is desirable that
the most closely spaced spectral components can be separated, and this will
generally be the case if the bandwidth is made of the order of 1/3 of the
minimum spacing (assuming a shape factor of about 5). See Fig.3.49.

For random signals, as discussed in Section 2.4.2, it is desirable for the
percentage bandwidth to be chosen less than 1/3 of the bandwidth of the
narrowest peak in the spectrum. In some cases it will only be possible to satisfy
this requirement by using stepping constant bandwidth filters, since 1% band-
width is typically the minimum constant percentage bandwidth available. As
previously mentioned, bandwidth compensation can be used to obtain a smooth
result.

For mixtures of deterministic and random components it is generally best to
base the selection of bandwidth on the deterministic components. In this case,
if stepping bandwidth is used to cover a wide frequency range, it is best not to
use bandwidth compensation, but to recognize and accept the sudden changes
in level of random components where the filter bandwidth changes.

3.6.2.4. Averaging Time T,

Here, the discussion of Section 3.6.1.1 still applies, with the following addi-
tional remarks:

For deterministic signals, the minimum requirement is set by Equation (3.18)
(T4 = 8/f) and solutions of this can be obtained from Fig.3.52, but often this will
be small in relationship to the filter response time which determines the analysis
speed. Where DC recording is used, it is wise to increase the averaging time up
to the maximum which does not affect the sweep speed. This limit is given in
terms of Tp, the “dwell time per bandwidth” (see Section 3.6.2.5), by the
equation:

To<® (3.19)

where allowance has been made for a filter characteristic with shape factor
> 4,5.

For random signals, the selection of T, should be based on Equation (3.9)
(e = 1/(2 VBT,)) and Table 3.4 lists values of standard error ¢ against BT,
product. Moreover, Fig.3.52 permits the selection of T, for various bandwidths
and centre frequencies for a BT, product of 10. This value of T, can be modified
proportionally for other BT, products.
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BT, 10 20 30 40 50 80 120
€(dB) 1,5 1,0 0,8 0,7 0,6 0,5 0,4

T01039GB0

Table 3.4. Standard error € vs. BT, product

3.6.2.5. Filter Dwell Time T,

The “filter dwell time” T, is defined by the equation

B
S = (3.20)
Tp
where S is the sweep speed and B is the filter bandwidth

Note that S will be in Hz/s for B expressed in Hz, but will be in mm/s (paper
speed) for B expressed in mm (equivalent length on the recording paper).

Thus T, is the time taken to sweep over one bandwidth.

As mentioned previously, the sweep rate (and thus Tj) is limited by one or
more of the factors:

1. Filter response time Ty

2. Averaging time T,

3. Recorder writing speed W

and each of these will be considered in turn.

With respect to filter response time Ty, it will be appreciated that if Tj is
made equal to Ty, then the recording of the whole spectrum will be delayed by
an amount equal to the bandwidth (see Fig.3.50(a)). This is normally not accept-
able, and it is customary to make

Tp = Kg Tg (3.21)
where for example, Kz = 4 will give a delay equal to 1/4 bandwidth (see
Fig.3.50(b)). This a good compromise as it corresponds to the average frequen-
cy error in the fixed filter case. Solutions are given for this case in the graph of
Fig.3.52. Combining Equation (3.21) with Equation (3.1) of Section 3.1.2, one

obtains the result:

BT, = Ky (3.22)
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where Kj is to be chosen keeping in mind that the delay is equal to B/Kg.
Equation (3.21) will normally govern for deterministic signals.

With respect to averaging time T,, there are two basic considerations to be
taken into account when selecting Tj,. Letting:

Tp = KaTh (3.23)

then K, will either be limited by the maximum rate of fall of the detector
(8,7 dB/ T,, see Fig.3.22) which limits the ability to reproduce the filter charac-
teristic, or by the maximum allowable errors and delays in recording peaks and
valleys in the spectrum (Figs.3.20, 3.21). Table 3.5 allows selection of K, based
on these factors. With respect to the ability to reproduce the filter characteris-
tic, this will primarily apply where the spectrum contains sinusoidal compo-
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Fig 3.50. Effect of filter response time on recorded spectrum
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nents. The filter shape factor to be used is not necessarily the actual value, but
that corresponding to the steepest part of the characteristic. The error and
delay on peaks and valleys (usually the former) will generally govern in the case
of random signals where the analyzer bandwidth is normally less than that of the
function being analyzed, and account has been taken of this in setting the
values in the table.5 Equation (3.23) will always govern for random signals and
signals on a loop.

K, 1 2 3 4 5
Filter Shape Factor 15 8 5,6 4,5 3,8
Error on peaks (dB) 1,2 0,5 0,4 0,2 0,15
Delay on peaks (xB) 0,3 0,2 0,13 0,1 0,1
Error on valleys (dB) 3 1 0,5 0,25 0,2
Delay on valleys (xB) 0,5 0,25 0,17 0,13 0,1

T01040GB0

Table 3.5. Choice of K, according to filter characteristic or required accuracy

With respect to the Recorder Writing Speed W, it is not really necessary to
calculate Tp, as the paper speed is determined directly from the writing speed
(see Eqn.(3.25)). If it is of interest, then T, can be calculated back from the
paper speed (using Equation (3.24)).

3.6.2.6. Writing Speed W

Here, the discussion of sections 3.6.1.2 and 3.6.1.3 applies fully, but it is
perhaps worth remarking that in the case of narrow band analysis, the advan-
tages of DC vs AC recording are generally more marked, partly because the
analysis time becomes more critical, and partly because the validity of the
results is not so obvious by inspection, and thus the selection of parameters
such as averaging time is made somewhat more conservatively.

§Errors and delays given in the table will be correct when the filter bandwidth is equal to that of
peaks in the spectrum being analyzed. They may be underestimated when the signal bandwidth is
less (e.g. discrete components), but then the filter shape factor would normally govern. When the
filter bandwidth is less than that of peaks in the spectrum, the indicated errors will be conserva-
tive, and delays approximately correct
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3.6.2.7. Paper Speed P

As for the discussion of section 3.6.1.4, the selection of paper speed depends
primarily on whether DC or AC recording is used.

For DC recording, the maximum paper speed may be obtained from Equa-
tion (3.20), expressed in the form

p = Be (3.24)

o

where B, is the equivalent of the bandwidth in mm along the recording paper.
There are two advantages in using this approach:

1. It is not necessary to go through the intermediate step of calculating the
sweep rate in Hz/s.

2. Equation (3.24) is equally applicable to the case of constant bandwidth,
where the bandwidth in Hz corresponds to a certain length in mm (on a
linear scale), and to constant percentage bandwidth, where a given percent-
age corresponds to a certain length in mm (e.g. on a logarithmic scale).

A e

(mm) Maximum slope

f'—'\ limited by ratio
writing speed

‘ paper speed
Normal
recording (F — 1) B
range 60 dB
50 dB =12
(= 100 mm) ( 0 mm)

Fig 3.51. Limitation of writing speed in recording a filter characteristic of shape
factor F

770297
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For AC-recording, the sweep rate will often be limited by the ability to write
out the steepest filter flank with a given writing speed. Referring to Fig.3.51 it
will be seen that the ratio of writing speed to paper speed must be greater than
the slope of the filter characteristic which can be expressed as

(F—1 ) Beg
2 120

where, as illustrated, Fis the shape factor corresponding to the steepest part of
the filter characteristic, and 120 mm is the paper width corresponding to 60 dB
(i.e. assuming that 100 mm corresponds to 50 dB).

Thus, P< (3.25)
Kw
240
where Ky =—— 3.26
YT Fo) (3.26)

and W s the writing speed corresponding to 100 mm paper width. Values of K,
can be obtained from-Table 3.6.

Ky 100 75 50 40 30
Equiv. Shape
Factor F 3,4 4,2 5,8 7,0 9,0

T01041GBO

Table 3.6. Choice of K, according to filter shape factor

Where it is the averaging time which governs T, (i.e. random signals and
looped signals where T, is greater than the loop length) then Equation (3.25) will
always govern. Where it is the filter response time which governs T, (i.e.
continuous deterministic signals) then it must be checked whether Equation
(3.24) or (3.25) governs.

It has already been shown (section 3.3.2) that for DC recording, if a writing
speed of 1000 mm/s is selected, then there is no effective increase in averaging
time. It can be shown that there will be no limitation with respect to reproduction
of filter slope either. The minimum averaging time available for DC recording
with B&K analyzers is 0,1s. Inserting this in Eqn. (3.23) with K, = 2 (corre-
sponding to Shape Factor 8) gives T, = 0,2s. Inserting this in turn in Equation
(3.24) gives
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B,
0’2" = 5 B,

Inserting the same shape factor in Equation (3.26) gives K, = 34,3 and thus
from Equation (3.25)

B,, - 1000
<=4 - 2928,
34,3

Accordingly, the limiting speed is almost 6 times faster, and thus Equation
(3.24) will always govern.

3.6.2.8. Summary

It is probably necessary at this stage to summarize the most important
information in the foregoing. Fig.3.52 indicates a logical procedure to be fol-
lowed in the general case, and allows the most important parameters to be
selected graphically. The following values have been chosen as most generally
appropriate:

(1) Kg = 4 (See Section 3.6.2.5) i.e. BT, = 4

(2) K, = 2 (See Section 3.6.2.5) i.e Tp > 2 T,

(3) Kw = 50 (See Section 3.6.2.7) i.e. P < B,, - W/50

Note that the reason for the somewhat more conservative approach in select-
ing Ky, compared with K, (with respect to filter shape factor) is that the writing
speed gives the same limitation for rising and falling curves, while the averag-
ing time primarily limits falling curves only (and thus peaks are more likely to be
recorded correctly).

3.6.2.9. Calibration

In the analysis of deterministic signals it is usual to express the results
directly as an amplitude spectrum, where the amplitudes have the same dimen-
sions as the input signal, e.g. volts. If the amplitudes are represented on a
logarithmic scale then a ratio of 10 in amplitude corresponds to 20 dB and
Fig.3.53 can be used to convert to linear amplitudes within each 20 dB range. It
is normal to set the full-scale value on the recording paper to a round figure (i.e.
in 10 dB steps) and this can be done as follows:
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Fig. 3.52. SWEEP SPEED FOR SWEPT FREQUENCY ANALYSIS
For each bandwidth and frequency range, determine Filter Dwell Time,
Averaging Time and Sweep Speed as follows:

1. Random signal: Dwell time T, is always determined by averaging
time T,.

From the graph read off T, from the appropriate line for BT, = 10
(horizontal lines for constant bandwidth, sloping lines for constant
proportional bandwidth). This value will correspond to + 1,5dB RMS
error. For a higher BT, product and consequent reduced error, in-
crease the value of T, proportionally. Calculate T, = 2 T .

For DC recording, calculate sweep speed S = B/Tp.

For AC recording, T, is determined by recorder writing speed W and
this can be read directly from the right-hand scale. Sweep speed can
then be calculated from S = BW/50 (applicable to 50 dB potentiome-
ter and 100mm paper).

2. Deterministic Signal (periodic or quasi-periodic): Read Ty based on
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filter response time from appropriate line for BT, = 4 (or 2 where
bandwidth <1%). Read also minimum averaging time T, based on
+ 1/4 dB ripple from line fT, = 3 (independent of bandwidth).

For DC recording, calculate sweep speed based on filter response as
S = B/Tp.

For AC recording, read off writing speed W corresponding to T, and
calculate sweep speed based on recorder response as S = BW/50.
The governing sweep speed is the lesser of this and the value as
calculated for DC recording.

In all cases where sweep speed is governed by filter response time,
increase T, to the highest value which does not affect sweep speed.
(i.e. Tp/4 for DC recording.)

Note (1) Averaging times will normally be constant over at least a half
decade, whereas filter response times change automatically with fre-
quency.

Note (2) S will be in Hz/s for B in Hz, but will be directly in mm/s for B
expressed as equivalent recorder paper length in mm

1. Using the internal reference signal of the analyzer

This is typicaly 50 mV for B & K analyzers. With the analyzer in linear frequen-
cy mode (i.e. filter disconnected) and meter range 100mV, the Level Recorder
input attenuation is adjusted until the pen is 6 dB below full-scale. The full-scale
on the paper then corresponds to the full-scale voltage of the meter for all the
succeeding measurements. This full-scale voltage can easily be changed in
10 dB steps as required. Conversion of the scaling to mechanical units is
straightforward provided the conversion factor of the input signal is known,
(e.g. 10mm/s per volt).

2. Using an external reference signal

This might for example be a pistonphone signal or the signal obtained from
an accelerometer mounted on an accelerometer calibrator. The signal may

0 10 20dB
l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 J
1 15 2 3 4 5 6 8 10 Equiv. linear
ampl. values
750102|

Fig. 3.53. Linear amplitude vs. dB levels
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either be played directly into the analyzer input or recorded on a tape recorder.
To illustrate the general method, the case will be taken of an accelerometer
calibrator which gives a vibration level of 1g peak (i.e. 0,7g RMS). The signal
from the measurement system is played into the input of the analyzer (which is
in linear mode) and the recorder pen adjusted to 3 dB below full-scale. The full-
scale will now correspond to 1 g RMS and all later measurements can be related
to this, taking due account of any 10 dB steps in amplification of either the
measurement, analysis, or recording systems.

In the case of random signals, the results may be expressed as an amplitude
spectrum, but it may be preferred to express them as a power spectral density
(PSD).

For constant bandwidth analysis this only involves a modification of the
scaling as follows:

The PSD is obtained by squaring the linear amplitude and dividing by the filter
bandwidth, and the result is of course independent of frequency.

e.g. for a full-scale level of 10g and 100 Hz bandwidth
the full-scale power = 100g?
and full-scale PSD = 100g?/100 Hz = 1 g?/Hz

Normally, this sc¢aling must be adjusted each time the bandwidth is changed,
but for an analyzer with “bandwidth compensation” it is adjusted automatically,
by means of an attenuation proportional to the filter bandwidth, and the calibra-
tion need only be performed once, even where the bandwidth changes automat-
ically during normal measurements. A sinusoidal reference signal may be used,
but it is desirable to make the calibration adjustments with the filter selected,
and thus the filter must be centred on the reference signal so as not to attenuate
it.

For constant percentage bandwidth analysis of random signals the band-
width varies proportionally with the frequency, and thus the conversion factor to
calibrate as a PSD varies with frequency. On the normal log-log paper used for
1/3-octave analysis the conversion factor is linear and corresponds to a linear
slope of -3 dB/octave (-10 dB/decade). Thus, if the conversion to PSD is
performed at one frequency (e.g. 100 Hz) then it is relatively simple to draw
lines of constant PSD through the values calculated at 100 Hz and sloping
upwards at 10 dB/decade with increasing frequency. Fig.3.54 illustrates a typi-
cal example. Alternatively, an instrument may be used which gives a power
attenuation proportional to frequency (i.e. —10 dB/decade) and if this is inserted
before the analyzer input, the system can be calibrated as described for
“bandwidth compensation ”. This is desirable in the case of analyzers which
have a hyperbolic or other non-logarithmic frequency scale, since it is not then
so simple to draw lines of constant PSD.
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Fig. 3.54. Typical 1/3-octave power spectrum with lines of constant PSD

3.6.3. Digital filter analysis

The operation of the Digital Frequency Analyzer Type 2131 is almost self-
explanatory, but it may help to give a guide to the selection of those parameters
which are not decided automatically.
3.6.3.1. Linear vs. Exponential Averaging

Normalily, linear averaging would be chosen in the following cases:

(1) Where the signal sample is limited in length, e.g. a short tape recording.

(2) Where it is desired to minimize the statistical error in a measurement made
on a stationary random signal with a certain fixed record length.

(3) Where linear averaging is specifed or recommended.
Exponential averaging would be used in the following cases:

(1) Where it is desired to monitor a continuous signal which may be slowly
varying (and therefore not stationary over a time considerably longer than
the averaging time).

(2) Where it is desired to obtain a result with a uniform statistical error over all

frequencies (i.e. uniform BT, product).
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3.6.3.2. Averaging Time T4

The same basic considerations apply as discussed in section 3.6.1.1 for
stepped 1/3-octave filtration, but it may be worth making the following remarks
which apply specifically to the 2131 Digital Frequency Analyzer.

For continuous deterministic signals the easiest way to ensure that the
averaging time complies with Eqn.(3.18) (T, = 3/f) is to check visually that the
fluctuations are acceptable, in particular in cases where fis to be interpreted as
a beat or modulating frequency smaller than the analyzer bandwidth. It is quite
likely that such modulating frequencies will be common to all frequency ranges
and thus a constant averaging time will be optimal.

For stationary random signals it may be preferred to choose the averaging
mode giving constant BT, product and thus uniform error at all frequencies.
One advantage of this is that the result is then known to be valid at all
frequencies.

Where it is desired to get maximum information from a limited record

1/3-Octave Centre Frequency (Hz)
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Fig. 3.55. BT, product vs. averaging time T, for the 2131 Analyzer
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length, of either a random or deterministic signal, then the averaging time is
virtually decided by the record length. Note that the result may not then be valid
at all frequencies, since for short averaging times, at least, the BT, product may
be too low.

Fig.3.55 indicates the BT, product achieved with the various averaging times
over the frequency range of the analyzer. The invalid range where BT, is less
than 1 is not included and a dotted line demarcates the values of BT, less than
10 for which the result would not normally be valid for random signals. The
values of BT, product may be inserted in Eqn.(3.9) (¢ = 1/(2 VBT,)) or Table 3.4
to obtain the relative standard deviation of the error for gaussian random
signals.
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4. FAST FOURIER TRANSFORM (FFT)

As mentioned in Section 2.2.4 the Fast Fourier Transform (FFT) is an algo-
rithm or calculation procedure for obtaining the Discrete Fourier Transform
(DFT) with a greatly reduced number of arithmetic operations compared with a
direct evaluation. Since its first publication in 1965 (Ref.4.1) it has revolution-
ized the field of signal analysis, and it is still probably the most important single
analysis technique available. At first the algorithm was implemented on large
computers in a high-level language such as FORTRAN, later in assembler
language on mini-computers. For several years there has been a dominance of

Fig. 4.1. Dual Channel Signal Analyzer Type 2032
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dedicated analyzers which have the FFT algorithm implemented in a combina-
tion of hardware and firmware. The B&K Analyzer Type 2032 (Fig.4.1) is one of
the most advanced of this kind, and despite being a standalone analyzer, is very
flexible in its operation, and can even be programmed by the user for specia-
lised tasks.

One of the major advantages of the FFT over other types of frequency
analysis, e.g. using filters, is that retention of phase information makes trans-
formation in either direction possible and in fact relatively simple. It also
permits the evaluation of a large number of functions applicable to multi-
channel measurements and system analysis, e.g. correlation, coherence, fre-
quency response functions, etc. In this chapter, the discussion is limited to
frequency analysis of single channel (stationary) signals, but the other topics
are taken up in Chapter 7.

4.1. THE FFT ALGORITHM
For convenience, the basic equations of the DFT (from Section 2.2.4) will be

repeated here. In particular, the DFT (forward and inverse transforms) are
represented by:

1 Sl (2.18)
G(k) = N nz::o g(n)e” ™~
N-1 n
gin) = . G(k)e/“W" (2.19)

while a matrix version of Eqn. (2.18) for N = 8 is represented by:

[G,] I R N (Y

G, T 72 - N~ | v <« ~N[|g

G, T - L <« 1 = | <92

Gs|_TI11T N~ « ~ | <~ -5 vl|lgs (2.20a)
Gyl 8|1 | i U i L 94

Gs T v - ~ | 2 < N|gs

Ge T« | =1 « | -9

| G- [T N« v | N - /g7]

The advantages of the FFT can be achieved in a variety of ways (Refs.4.2, 3.3)
but we will first limit the discussion to a particular version of a Radix 2
algorithm, where N is a power of 2. The differences between the different
versions are of a secondary nature and of most interest to an instrument
designer rather than user. However, it is probably of interest to a user to know
roughly how the FFT algorithm functions, so as to be able to appreciate any
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restrictions in its applicability. Users who wish to modify the operation of the
analyzer, which is possible with the Type 2032 already mentioned, using so-
called SPL (Signal Processing Language) will also benefit from a detailed
knowledge of the operation.

Basically, the savings of the FFT algorithm result from factorizing the A
matrix of Eqn.(2.20a) into a number (log, N) of individual matrices. This does
not immediately appear to give any benefit, but it will be shown that the factor
matrices contain only two non-zero elements in each row, of which one is
always unity, so that multiplication by each of the factor matrices requires only

“ complex multiplications. The total number of multiplications is thus of the

.der of N log, N instead of the N? required to multiply by the A matrix in one
step. As mentioned in Section 2.2.4 this represents a saving by a factor of 100
for the typical case of N = 1024.

Row number Row number
inB in A

000 (0) ﬂ byttt 1— 000 (0
oottt |t ot |t }|1oco0w@
o102 |t — | — t — | =—]oi0@
0113 1} — | — } — | —| 1100
100@ |} S N} / = N o001
101680 14/ —— N} / = \|10168
1oe | N — / | N — /|0n®
TN - )/ | N\ — /|

Fig. 4.2. Matrix B (A with rows reshuffled to bit-reversed address)

In fact it is not the matrix A directly which is factorized, but a reshuffled
version of it which is illustrated in Fig.4.2, and which will be called B. Matrix B is
obtained from A by interchanging the rows with those of “bit-reversed ad-
dress”, i.e. the binary representation of the row numbers 0 to 7 (000 to 111) is
reversed end-for-end to obtain the new address. Symmetrical numbers such as
101 remain unchanged. In Fig.4.2, on the left-hand-side, the actual row numbers
are given in binary form, while on the right-hand side the bit-reversed numbers
are given, and it can be checked that these indicate the original row number (in
matrix A) of the same row. It will be seen that multiplication by matrix B instead
of A will mean that the results will also be in bit-reversed order and will have to
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be reshuffled to obtain them in natural order. The reshuffling is a rapid process,
however, requiring negligible time in comparison with the matrix multiplica-

tions.

Fig.4.3 shows the three matrices X, Y and Z into which B can be factorized,
and demonstrates that when they are multiplied together the result is the matrix
B. Even though this demonstration only applies for N = 8, it will be appreciated
that the same principles can be extended to values of N equal to any power of 2.
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Fig. 4.3. Factorization of B into X, Y and Z

As an example of the systematic nature of the factor matrices, it will be seen
that the upper left quadrant of matrix Y (submatrix Y,) is a copy of matrix Z but
of order N/2. The upper left submatrix of matrix X is the next smaller version of
the same matrix, having the general form:
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[ 1]

Each successive matrix (in the order Z, Y, X} introduces progressively smaller
rotations; Z involves only /2 revolutions, Y introduces /4 revolutions while it is
only at the last stage that /8 revolutions are introduced.

FFT algorithm for N = 8
(except for scaling factor)

Data
Values

Frequency
Components

FFT Exchange
Log, N steps each _with
involving N complex bit-reversed
multiplications address
Legend: — —— —— —— — Add only

Rotate through angle
depicted and add

Transfer only

770481

Fig. 4.4. Flow diagram for FFT algorithm
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Fig.4.4 shows another representation of the same algorithm, this time indicat-
ing the way in which the successive multiplications by the factor matrices 2, Y
and X can actually be carried out in a computer. It will be seen that the whole
operation can be done “in place”, i.e., the resuit of each step is stored in the
same memory locations as the original data (and thus so is the final result).

At each step the data values can always be operated on pairwise, the results
of the operation being placed back in the memory locations of the 2 data values
from which they were obtained. It can easily be checked that the first three
steps in the diagram of Fig.4.4 correspond to multiplication by the matrices Z, Y
and X, respectively, while the final step represents the reshuffling to bit-re-
versed addresses. Note that the reshuffling can alternatively be done as a first
step, and this is for example the case in the 2032 Analyzer.

Each of the operations on a pair of data values is called a “butterfly”
operation, and by examination of the butterflies in the diagram of Fig.4.4, it can
be seen that the actual number of complex multiplications to be performed can
be halved again, because one unit vector in each butterfly is always simply the
negative (180° phase shift) of the other. Thus, only one actual multiplication by
the components of the vector is necessary in each butterfly operation. This
concept can be extended to obtain a further speedup by 2:1 using a so-called
Radix 4 algorithm, where sequence length N is a power of 4.

The Radix 4 algorithm corresponds to combining the factor matrices pairwise
(cf. matrix C in Fig.4.3). There will now be half the number of factor matrices,
but twice as many non-zero elements (viz. 4) in each row. Each butterfly thus
operates on four elements, and places the results in the same four memory
locations. However, the unit vectors in each butterfly are either in-line, at 180°
to each other or at 90° to each other (see Fig.4.5). This can be seen in fact from
matrix C of Fig.4.3 (even though this is of order 8 instead of 16) where each
column (representing operations on the same element) has four non-zero ele-
ments complying with this rule.

850996

Fig. 4.5. Vector patterns for Radix 4 algorithm
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Thus, once again only one actual complex multiplication is involved in each
butterfly operation, all other results being obtained by changing sign, exchange
between real and imaginary components etc. These simple operations are
much faster than multiplications, so the overall effect is a speedup by almost
2:1.

The only disadvantages are the limitation on transform size to a power of
four, and a slightly more complex algorithm.

A slight further increase in speed could be achieved with a radix 8 algorithm,
because the sine and cosine components of 45° are the same, but this is
normally not considered to compensate for the extra complexity of the algo-
rithm, and the restriction to powers of 8 in sequence length.

A practical point is that multiplication by a unit vector with a given orientation
involves multiplications by the sine and cosine coefficients of that angle. Con-
siderable time can be saved by having these sine values tabulated, rather than
generating them repeatedly, although this of course requires more memory
space. However, for a transform of size N it is only necessary to store N/4
sine coefficients since all values can be simply generated from those for the
first quarter period. Moreover, both sine and cosine coefficients can be gener-
ated from the same table.

4.2. THE FFT FOR REAL-VALUED SERIES

Thus far, no distinction has been made between the time samples g(n) and
the frequency spectrum values G(k), but in the most common practical situa-
tion the g(n) values will be real while the G(k) values will be complex. The FFT
algorithm so far discussed is equally valid for real or complex data. If applied to
real data, however, there will be two redundancies:

1. The imaginary part of each input data value wil be zero and thus half the
memory will be used for storing zeroes.

2. The second half of the resulting spectrum, i.e. the frequencies from fy to f;
also represent the negative frequencies from -fy to zero (Fig.2.6) and since
the latter are the complex conjugates of the positive frequency values
(Eqn.(2.12)) there is no need to store them separately.

It is possible to remove these redundancies by means of an algorithm which
transforms a number N of real values as though they were N/2 complex values
and then manipulates the result to obtain the first half of the spectrum of the
original real data points (Ref.4.3). Most FFT systems operate in this manner. It
should be noted that because of the antisymmetry of the imaginary components
of the spectra of real functions both the zero frequency (DC) and Nyquist
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frequency components are real numbers and in fact appear as the real and
imaginary components, respectively, of the first complex number of the output
spectrum (Fig.4.6). All the other complex numbers are genuine frequency com-
ponents distributed linearly with frequency up to fy X (N-2)/Ni.e. just less than
the Nyquist frequency. It is possible to move the Nyquist frequency component
to its correct position at the end of the table, but this then requires (N/2 + 1)
(complex) storage locations. It is in any case not usually necessary, since to
avoid aliasing it is desirable for the Nyquist frequency component to be zero, or
at least so small that it is not usable.

real storage focations = — complex storage locations
4——|N eal g 2 p g l——>

T T T T - —T T T T
NNEEEREENENEEEREEENC
F F2) /F(S) F‘Nz‘”
F{0) = real part imag. part
DC component (real)
F(Ny = Nyquist frequency Correct position of F{ —N2-)

component (real)
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Fig. 4.6. Arrangement of output array from FFT algorithm for N real-valued
samples

Some FFT analyzers, e.g. the B& K Type 2033, only have an algorithm imple-
mented for real-valued time series. However, with the aid of an external com-
puter to manipulate the data, it is possible to perform inverse transforms of
complex data, as explained in detail in Ref.4.4.

4.3. LIMITATIONS OF FFT PROCESSING

As has just been shown, the FFT algorithm produces an identical resuit to
direct application of the DFT. Thus, any limitations of the FFT process are those
of the DFT. These have been briefly discussed in Section 2.2.4, and are basically
due to the finite (circular) and discrete nature of the DFT algorithm. Thus,
regardless of the actual nature of the input signal, the analyzed record and
results are a finite number, N, of discrete digital samples, in theory representing
one period of an infinitely long periodic signal.

The effects of this are illustrated in Fig.4.7, which makes use of the Convolu-
tion Theorem in a graphical way, as developed in Chapter 2. Detailed discus-
sions will also be found in Refs.4.5 and 4.6.

Fig.4.7(a) shows a time signal g(t) and its Fourier spectrum G(f), both
assumed to be infinitely long. The first step in a digital analysis is discrete
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sampling of the time signal, which, as illustrated in Fig.4.7(b) can be considered
as equivalent to muitiplication by an impulse train A,(t) with sampling interval
At. Its Fourier transform A,(f) is likewise an impulse train, with impulses at all
multiples of the sampling frequency f, = 1/At. Fig.4.7(c) shows the result of this
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Fig. 4.7. Derivation of the Discrete Fourier Transform from the Integral Trans-

form
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multiplication in the time domain, which in the frequency domain corresponds
to a convolution of the two spectra. Thus, it is seen that any frequency compo-
nents in the original spectrum G(f) which extend over half the sampling fre-
quency, overlap in that region and cause aliasing, as discussed in Chapter 2.
This is the first problem to be dealt with in using the DFT.

The next step in the procedure, represented by Figs.4.7(d) and (e), shows the
effect of the time limitation necessary to fit the time signal into a finite record
length. This is the equivalent of multiplication by a time window function
(rectangular in the illustration) so that once again there is a convolution in the
frequency domain, this time with the Fourier transform of the time window
function. For the rectangular time window illustrated, the spectral function is a
sin x/x function with zeroes at multiples of 1/T, where T is the window length.
The effect of the window function is not very great on the smooth frequency
spectrum illustrated, but for signals containing discrete frequency components
(delta functions), these become replaced by the window function as illustrated
in Fig.2.29. This effect, variously known as “window effect”, “sidelobe genera-
tion” and “leakage” (because power from discrete frequency components is
“leaked” into adjacent bands), is the second problem to be dealt with in using
the DFT.

The final effect is illustrated in Figs.4.7(f) and (g) and is known as the “picket
fence effect”. It is not possible to represent the continuous spectrum of Fig.4(e)
in a digital memory and so it must also be discretely sampled. Hence the name,
as it can be considered as viewed through the slits in a picket fence (Fig.4.8). By
analogy with the steps of Figs.4.7(b) and (c), the discrete sampling in the
frequency domain corresponds to a periodic repetition of the time record, with
a period equal to the record length.

These three effects, and how to deal with them, will now be discussed in a
little more detail.

“Picket Fence” effect

LA

852089

Fig. 4.8. lllustration of Picket Fence Effect
155



4.3.1. Aliasing

Aliasing is not normally of concern in the analysis of stationary signals,
because the analyzers generally have built-in low-pass filters appropriate to
each frequency range. Because all values up to the Nyquist frequency are
calculated in any case, it is usual to choose a very steep low-pass filter with
cutoff frequency at about 80% of the Nyquist frequency, and only display results
unaffected by the filter. Typically, for a 1 K (1024 point) transform, 512 frequency
components are calculated, and 400 displayed. Similarly, for a 2K transform,
800 lines are displayed (or 801 where the DC component is included).

The steepness of filter characteristic required is of the order of 120 dB/octave
to ensure that high frequency components folded back into the measurement
range (by aliasing) are attenuated sufficiently. In the case of a 2048 point
transform, for example, with Nyquist frequency in line number 1024, a compo-
nent in line number 1248 (800 + 224 + 224) would fold back into line number
800, and is only a little more than half an octave higher in frequency. A lowpass
filter with 120dB per octave roll-off would attenuate it by approx. 75 dB and thus
take it outside the normal dynamic range of a typical analyzer.

The lowpass filters can either be analog or digital, but in the latter case the
first lowpass filter applied before digitising must of course be analog. As
examples, the B&K single channel analyzer Type 2033 has a separate analog
filter for each of its 11 frequency ranges, while the dual channel analyzer Type
2032 (Fig.4.1) has a single analog filter at 25,6 kHz (for each channel) and all
lower frequency bands are achieved by digital filtering and resampling in an
appropriate number of octave steps.

Even so, as previously stated, aliasing is not usually a problem to the user
when analyzing stationary or other signals in a fixed frequency band. It is a
problem to be dealt with when performing a “tracking” analysis, where for
example the sampling frequency is tied to the speed of a machine, and this
question is taken up in more detail in Chapter 6, on the analysis of non-station-
ary signals.
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4.3.2. Window Effects

As illustrated in Fig.4.7(d) and (e), the time window applied to the data
effectively determines the filter characteristic associated with the analysis.
Applying no special window is the same as applying a rectangular window, as
illustrated in Fig.4.7, but for stationary signals, and in particular those contain-
ing discrete frequency components, this is in general a poor choice of window
because of the potential discontinuity where the ends of the record are effec-
tively joined into a loop.

A better choice of window function (for stationary signals) is one which is
equal to zero at each end, and whose amplitude varies smoothly along the
record length. An excellent general purpose window is known as “Hanning”, the
name being derived from von Hann, who applied an equivalent process to
meterological data. In the time domain the Hanning window is equivalent to one
period of a raised cosine (i.e. cosine squared) function, as illustrated in Fig.4.9
where it is compared with a rectangular window. Their frequency spectra are
also compared there, (on log/log scales) from which it is evident that even
though the main lobe (and bandwidth) cf the Hanning function is greater, the
sidelobes fall off at 60 dB/decade rather than 20 dB/decade.

Frequency
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Fig. 4.9. Comparison of the spectra (filter characteristics) of the Flat (rectangu-
lar) and Hanning time weighting functions
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Fig. 4.10. Derivation of the spectrum of the Hanning weighting function

The convolution theorem can be used to explain the reduced sidelobes of the
Hanning window as illustrated in Fig.4.10. The Hanning function is considered
as being formed by limiting the length of a raised continuous cosine by multipli-
cation by a rectangular window of length equal to one period. The convolution
of the two spectra results in three overlapping sinx/x functions, where the
central one has twice the scaling of the other two. The displacement of the two
smaller functions is such that their sidelobes are out-of-phase with the side-
lobes of the main function, and almost cancel them. The general situation is that
one sidelobe of order “n” is counteracted by the sum of two sidelobes (one of
order “n + 17, the other of order “n — 1”) of half scale. It will be appreciated that
the larger the order “n”, the more complete is the canceliation, and hence the
more rapid rate of fall-off of the resulting sidelobes.

Other window functions may be found useful for special purposes. One is
named “Hamming” (directly after its originator) and should not be confused
with “Hanning”. It consists of a Hanning window on a small rectangular pedes-
tal, scaled so that the first few sidelobes cancel. It has the advantage over
Hanning, that the highest sidelobe is at -42dB (compared with -32dB) but on
the other hand the remaining sidelobes are dominated by the rectangular
function and still fall off at 20 dB/decade. The Hamming function probably found
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most use in the days when dynamic range was typically 50dB, and it has now
been superseded by a number of others.

The best of these is probably the so-called “Kaiser-Bessel” window, whose
highest sidelobes are at -69dB, and bandwidth 1,8 times the line spacing
(compared with 1,0 for rectangular, and 1,5 for Hanning). In theory a Gaussian
function (e‘X2) transforms into another Gaussian function with no sidelobes at
all, but the Gaussian function is infinitely long and must be truncated in
practice. Truncation giving a highest sidelobe of —-69 dB gives a bandwidth 1,9
times the line spacing and is thus slightly inferior to the Kaiser-Bessel.

Another window which is useful for a different purpose is the “Flat-top”,
which is designed specifically to minimise the picket fence effect, and thus
facilitate calibration, using a calibration tone which may lie anywhere between
two lines of the analyzer.

Comparative properties of the most important windows are given in
Table 4.1. It should perhaps be mentioned that where digital zoom is available,
it is rarely necessary to resort to exotic windows, at least with stationary
signals, since separation of closely spaced components can be achieved by
zooming.

Highest Sidelobe Noise Maximum

Window Type Sidelobe Falloff Bandwidth* Amplitude

(dB) (dB/decade) Error (dB)
Rectangular -13 -20 1,00 3,9
Hanning -32 -60 1,50 1,4
Hamming —43 -20 1,36 1,8
Kaiser-Bessel -69 -20 1,80 1,0
Truncated Gaussian —69 -20 1,90 0,9

Flat-top -93 0 3,77 <0,01

* Relative to line spacing

Table 4.1. Properties of various data windows

T01254GB0

The window type is not the only factor affecting the final filter characteristic;
it is also influenced by the discrete sampling of the windows in the frequency
domain, and by the phase of the signal.
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Fig. 4.11. Frequency sampling of the continuous spectrum of a time-limited
sinusoid. Number of periods within the time window:
a) half-integer b) integer

The first point is illustrated in Fig.4.11 which shows two extremes for rectan-
gular weighting of a single sinusoid. In Fig.4.11(a) there is a half integer number
of periods in the record length, meaning that the peak of the window function
falls between two lines of the analysis, and all sidelobes are sampled at their
maxima. The other extreme is shown in Fig.4.11(b), which corresponds to an
integer number of periods along the record length, so that the peak of the
window characteristic coincides with an analysis line, and all other samples fall
at the zeroes between the sidelobes. Of course, when an integer number of
periods is repeated periodically, the result is an infinitely long sinusoid with only

one frequency component.

The second point is illustrated by Fig.2.29, where it is seen that the different
phase relationships between a sine and a cosine cause different interactions of
the sidelobes from the positive and negative frequency sides, giving reinforce-
ment of some, and partial cancellation of others.
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Fig.4.12 (from Ref.4.5) illustrates these two points with actual measurements,
and shows the effect of both phase relationships and number of periods.

It should be mentioned that the case illustrated in Fig.4.12(a) is extremely
difficult to achieve in practice, except by design, and thus normally a Hanning
window is chosen for continuous signals containing discrete frequency compo-
nents. An exception is where tracking analysis is used, as already mentioned,
where the digital sampling is tied to the speed of a machine (or process) and
where the number of periods in the memory can be forced to be an integer. The
same will apply to all harmonics of the tracking frequency, but it is almost
impossible to arrange for other discrete frequencies (for example stemming
from a different speed shaft) to satisfy the requirement at the same time.

Before leaving window functions it may be worth pointing out that they can be
applied by direct multiplication in the time domain, but it is often more efficient
to apply them by convolution in the frequency domain. The convolution coeffi-
cients for Hanning weighting, for example, are -/4, 1/2, —/a, multiplication by
which can be achieved by lateral shifts of the binary representations of the
numbers, and therefore the process does not involve actual multiplications, only
additions. In particular in the case of non-destructive zoom (see section 4.4.2)
where the time record is very long, it is more efficient to apply the window
function by convolution in the frequency domain rather than multiplication in the
time domain.

4.3.3. Picket Fence Effect

The picket fence effect is by no means limited to FFT analysis; it is also found
in other situations where discrete fixed filters (as opposed to swept filters) are
used, such as in normal 1/3-octave analysis.

In general, unless a frequency component coincides exactly with an analysis
line, there will be an error in both the indicated amplitude and frequency (where
the highest line is taken as representing the frequency component). This can be
compensated for, provided it is known (or assumed) that one is dealing with a
single stable frequency component. The discussion here is limited to Hanning
weighting, but it would be possible to derive the same kind of information for
any window function.

For single stable frequency components the frequency and amplitude errors
are defined by the difference in dB between the two highest samples around a
peak, with the actual frequency obviously lying in between them. Fig.4.13 gives
the amplitude correction factor in dB, and frequency error as a proportion of
the line spacing, based on AdB, the difference in dB between the two highest
lines around a peak. For Hanning weighting, AdB is a maximum of 6dB when
the frequency coincides exactly with an analysis line, and a minimum of zero dB
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Fig. 4.12. FFT analysis of sinusoidal time signals using different window lengths
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(b) & (¢) Half integer number of periods with different phase relation-
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Fig. 4.13. Amplitude and frequency compensation for picket fence effect with
Hanning weighting

when it falls exactly between two lines. A AdB of 6dB occurring anywhere in the
upper end of the spectrum is a good indication that interrelated frequency
components (e.g. tied to machine speed) are sufficiently stable for these cor-
rections to be valid.

It is also possible to curve fit the Hanning function to the three highest
samples around a peak (as in some Bruel & Kjeer software for “Harmonic and
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Sideband Cursors”) and this will even cope with some frequency instability.
Note that this technique is used in the 2515 Analyzer to compensate amplitude
and phase automatically for picket fence errors, when the Harmonic Cursor is
selected.

Using these picket fence correction techniques it is possible to achieve a
frequency accuracy approximately 10 times finer than the line spacing, and in a
non-destructive zoom analysis (typically 4000 line) this can give a frequency
accuracy of approx. 1:20000.

Where a “Flat-top” weighting or automatic compensation is not available, the
amplitude correction factors of Fig.4.13 will be found extremely valuable for
calibration with a calibration tone.

4.4. ZOOM FFT

The FFT algorithms discussed so far result in a so-called “Baseband analy-
sis”, where the frequency range extends from zero up to the Nyquist frequency
fn, and the frequency resolution is determined by the number of frequency lines
up to fy (normally half the number of original data samples). In certain situations "
it is desirable to obtain a considerably finer resolution over a limited portion of
the spectrum, and the so-called “Zoom-FFT” procedure permits this. It can be
considered as “zooming in” on a limited portion of the spectrum with a resolu-
tion power corresponding to the number of lines normally used for the whole
spectrum (Fig.4.14).

In fact there are two main procedures used for digital zoom, each having
certain advantages and disadvantages, so it is interesting to compare the two
methods.

To understand the fundamental difference, it is necessary to examine the
factors determining the resolution of an FFT analysis:

The sampling interval At = 1/f
and record length T = NAt = N/f,
Thus, analysis resolution Af = 1/T = f/N (4.1)

Consequently, the two ways of reducing the resolution Af, are either:

(1) Reduce the sampling frequency f.. This corresponds to so-called “Real-
-time zoom”.

(2) Increase the record length N. This corresponds to so-called “Non-de-
structive zoom”.

A detailed discussion follows.
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Fig. 4.14. (a) Original baseband spectrum
(b) Shaded section of (a) “zoomed” by factor 64:1

4.4.1. Real-time Zoom

This technique derives its name from the fact that the signal must be pro-
cessed in real-time by a zoom processor, in order to shift the frequency origin
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to the centre of the zoom band, low-pass filter the signal, and resample as for
the digital filtering described in Section 3.5. The final FFT operation does not
have to be in real-time.

The basic principles can be understood by analogy with the discussion of
Section 2.2.1, on the way in which the Fourier integral (Eqn.(2.10)) functions. As
described there, multiplication bya rotating unit vector e 27! effectively shifts
the frequency origin to frequency f,. The component at frequency f, is stopped
in the position it occupied at time zero, and virtually becomes a new DC
component (although in general it is complex). The positive and negative
sampling frequencies = f; are likewise moved by an amount f,, as illustrated in
Fig.4.15. (This may introduce aliasing in the negative frequency region, as the
new negative Nyquist frequency (-fy + f,) may lie higher in frequency than the
lowest frequency component.) Note that even if the original time signal g(t)
were real, the modified signal would be a sequence of complex values.

Range in which
aliasing occurs Range to be expanded
'
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\ \ /
\ o\ /. /
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Fig. 4.15. Frequency shift caused by multiplying signal by unit vector rotating at
_fk

It is thus possible by multiplying any time signal g(t) by a unit vector rotating
at -f, to change its frequency origin to frequency f,. The complex signal, thus
modified, can then be low-pass filtered (using a digital filter) to remove all
frequency components except for a narrow band around f,, as illustrated in
Fig.4.15. Note that at the same time this lowpass filtration would generally
remove the portion of the spectrum where aliasing may have occurred. The
narrow frequency band remaining after lowpass filtration (the shaded area in
Fig.4.15) is shown to a larger scale in Fig.4.16 where it is also made apparent
that it is now possible to reduce the sampling frequency while still complying
with the sampling theorem. For example, if the total bandwidth after filtering is
less than 1/10 of the sampling frequency, it is possible to reduce the sampling
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frequency to /10 without overlapping in the vicinity of the new Nyquist frequen-
cy. In a similar manner to the digital filters discussed in Section 3.5, the
reduction in sampling frequency is achieved simply by retaining a reduced
number of samples, in this case every tenth, the rest being discarded. The
resampled sequence of lowpass-filtered complex samples can be transformed
by a (complex) FFT transformation to give the required “zoomed” spectrum.

The above discussion applies strictly to the general complex FFT transform.
If the baseband analysis system is designed to produce N/2 spectral values
from N real data values (Section 4.2), the data memory will only hold N/2
complex data values. On the other hand, the complex forward transform
(Eqn.(2.18)) gives N/2 complex results which are now all valid, because in
general there is no symmetry about the new zero frequency (the original
frequency f,). Thus the number of lines resolution in the zoomed spectrum is
unchanged. Note that as mentioned in the footnote on p.28 the second half of
the frequency spectrum obtained represents the negative frequencies (i.e. the
original frequencies below f,) which should be moved to their correct position
before the first half prior to display.
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Fig. 4.16. Detail of range to be expanded after resampling

In this case, in order to achieve a zoom factor of 10, the sampling frequency
would have to be changed by 20:1, the first 2:1 zoom virtually achieving the
same effect as the procedure described in Section 4.2. Note that in the Type
2032 Analyzer (Fig.4.1) both procedures can be used to obtain the same
spectral data (i.e. “Baseband” analysis, or “Zoom” in the centre of the base-
band range). Even though the spectral result is the same, the data treatment is
different, and in particular the analytic time function will be different in the two
cases.
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Fig. 4.17. Flow diagram for real-time zoom

In practice, as with the digital filters of Section 3.5.3, it is usually most
efficient to low-pass filter and resample in cascaded octave (2:1) steps, mean-
ing that the zoom factors would normally be powers of 2. Fig.4.17 shows a
block diagram of the procedure for real-time zoom. Two features should be
noted:

(1) In order to zoom around a new centre frequency f,, it is necessary to
re-process the signal through the zoom processor. This may not be
possible unless the signal has been stored.

(2) The memory buffer required for the time signal is no longer than for
baseband analysis. The extra length of time signal required to obtain the
finer resolution is achieved by reducing the sampling rate.

4.4.2. Non-destructive Zoom

Non-destructive zoom is simply a way of achieving a large transform size
(e.g. 10K or 10240 samples) by repeated application of a smaller transform
(e.g. 1K or 1024 samples). For a zoom factor M, it requires a data buffer M
times longer than the transform size N.

Fig.4.18 illustrates the basic principles, for a 10K transform. The samples in
the data record are numbered 0 through 10239. Ten 1K transforms are per-
formed on records obtained by taking every 10" sample from the original 10K
record, first Nos. 0, 10, 20, ..., 10230, then Nos. 1, 11, 21, ..., 10231 etc. until all
data values have been transformed. Because of the linearity of the DFT, the
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sum of the transforms of the undersampled records must be equal to the
transform of the sum of the records. This sum is only equal to the original 10K
record when compensation is made for the small time displacements of each
of the undersampled records (except for the first). In the Fourier spectra this
represents a simple linear change of phase proportional to both the time
displacement and the frequency of the component in question (Ref.4.7).

Fig.4.19 is a block diagram of the process, for comparison with Fig.4.17.
Note that the zoom accumulator is of limited size, and thus only a selected 400
line section of the resulting high resolution spectrum is generated at any time.
if a 4000 line buffer were available it would be possible to generate all 4000
lines from one set of transforms, because even though only 512 complex
spectrum results are produced by each partial transform, the entire 5120 lines
can be deduced by periodic repetition (the undersampling of the part records
leads to this periodicity by aliasing as illustrated in Fig.4.18). It should be noted
that any errors introduced by this aliasing cancel out in the final summing
operation (by the linearity properties of the DFT).
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Fig. 4.18. Implementation of a 10 K transform using a 1 K transform ten times
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The biock diagram of Fig.4.19 also makes the following two features evident:

(1) Zoom in different frequency regions is based on exactly the same data
record.

(2) A long data buffer is required and the zoom factor is limited by the
length of memory.

4.4.3. Comparison of Zoom Techniques

The main advantages of non-destructive zoom accrue from the fact that it is
based on exactly the same data record. Thus, it is most valuable for (single
channel) signal analysis because even very stable signals vary slightly from
one record to another. A typical example would be in gearbox analysis, where
one might first want to zoom around the first harmonic (i.e. fundamental) of the
toothmeshing frequency and then around the second and third harmonics,
knowing that because the same data record is used, there is an exact integer 1,

Analog Analog to
Antialiasing Digital
Filter Converter

Y

Analog
Input 3 5 ADC
/2

| 10K Sample Time Signal I

Mm Times

1K FFT
Y
) Phase
x e—i2mt-1At Compensation
A
Z Zoom
Accumulator

800388

Fig. 4.19. Flow diagram for non-destructive zoom

171



2, 3 relationship between the frequencies of these components. The same
cannot be said for real-time zoom, because for zooming around each harmon-
ic, a different data record is processed.

It is only with non-destructive zoom that frequency component definitions to
an accuracy of 1:20000 (as described at the end of Section 4.3.3) can be
achieved.

The disadvantage, that zoom factors are limited by the record length, is
rarely a restriction in signal analysis, because it is rarely that individual
components are so stable in frequency as to justify a resolution better than
1:4000 or so, for example when tied to machine speed.

A possible exception is equipment with servo-controlled speeds such as
Hi-Fi audio equipment.

Larger zoom factors are more relevant for (dual channel) system analysis,
where for example frequency response functions can be expected to be stable
even if the individual excitation and response signals vary somewhat. Thus,
even the results of real-time zoom in contiguous (or overlapping) bands can be
expected to match up at the intersections. Zoom is often required in frequency
response measurements to achieve adequate resolution of lightly damped
resonance peaks. (See Chapter 7.)

4.5. PRACTICAL ANALYSIS OF STATIONARY SIGNALS
4.5.1. Analysis Parameters

Most of the parameters associated with an FFT analysis have already been
mentioned, but will be summarised here for ease of reference.

The frequency range for baseband analysis is from zero (DC) to the Nyquist
frequency fy (i.e. one half of the sampling frequency f,), independent of the
number of samples in the data record. The actual useful frequency range is
limited by the anti-aliasing filters, typically to about 80% of the Nyquist fre-
quency (for example 800 lines out of 1024 calculated).

For zoom analysis with factor M, the frequency span is M times smaller than
the useful frequency range for the corresponding baseband analysis.

The number of lines for baseband analysis is related to the transform size
N, and is usually N/2 up to the Nyquist frequency, and approximately 80% of
this within the display range. For real-time zoom, the number of lines is usually
the same as for the corresponding baseband analysis, while for non-destruc-
tive zoom it is usual to talk about a number of lines corresponding to the larger
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data record (e.g. 4000 lines, of which 400 are calculated at a time, correspond-
ing to a record length of 10K).

The line number of a spectral line corresponds to the number of periods of
that frequency in the data record. Thus, line number 1 corresponds to one
period along the record length, and line number 400 to 400 periods.

The resolution g, or line spacing of the analysis is simply the useful frequen-
cy range or frequency span divided by the number of display lines. It is always
equal to the reciprocal of the record length transformed i.e.

1 1 fs
= —=— = 8 4.1
g T  NAt N @1
The bandwidth of the analysis is generally greater than the resolution by an
amount determined by the time window used. Table 4.1 indicates the bandwidth
B in proportion to the resolution 8 for a number of time windows.

Note that so-called “zero-padding”, which sets the second half of a data
record to zero, effectively halves the record length, and thus doubles the
bandwidth, if the same type of weighting function is used on the reduced record
length. Zero-padding is mainly used in the calculation of time functions such as
cross correlation, as discussed in Chapter 7.

4.5.2. Calibration and Scaling

Since this chapter deals with the analysis of stationary signals, it is only
necessary to distinguish in scaling between stationary deterministic signals,
made up of discrete frequency components, and stationary random signals
whose power is distributed in frequency.

Usually, discrete frequency components are scaled such that the correct
amplitude of a particular frequency component is read at the centre frequency
of a peak, independent of the weighting function used. If the frequency coin-
cides exactly with an analysis line, the value is read directly, otherwise it will be
necessary to apply picket fence corrections as described in Section 4.3.3. The
“power spectrum” value can be obtained by squaring the amplitude. It is
meaningless to talk of power spectral density for discrete frequency compo-
nents, because in theory they have zero bandwidth.

For stationary random signals the reverse is the case, since it is most
relevant to speak in terms of “power spectral density” (PSD) which should give
a consistent result, provided the analysis bandwidth is less than the bandwidth
of the peaks in the signal itself. One way of checking the latter is to zoom at the
peak and confirm that the result does not change.
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To calculate PSD, the power spectrum value, obtained as described above,
should be divided by the analysis bandwidth B defined as in Section 4.5.1.

Note that the bandwidth associated with each line must be taken into account
when integrating power spectra over a frequency band, e.g. for conversion to
constant percentage bandwidth or to obtain the total power in the entire
spectrum. The same result will be obtained by integrating PSD directly with
frequency, or by adding the power values of the individual lines and then
compensating for the bandwidth associated with each line. As an example,
analyzing a white noise signal with Hanning weighting will produce power
spectrum values 1,5 times greater than with flat (rectangular) weighting, but
compensating for the bandwidth (Table 4.1) the PSD results will be the same.

Even a spectrum consisting of discrete frequency components must be
compensated for the bandwidth factor when integrating over a frequency band.
Comparing Hanning with flat weighting, for the case where frequencies coin-
cide exactly with analysis lines, each discrete component, in the case of
Hanning weighting, will have two adjacent lines at -6 dB (A dB = 6) which sum
up to give 50% of the power in the central line. It can be shown from Parseval’s
theorem that the correct result is obtained by summation over all lines even
when the frequencies do not coincide with the analysis lines.

4.5.3. Averaging

It has already been shown (Egn.(4.1)) that the resolution g is always equal to
the reciprocal of the record length T. For flat weighting, bandwidth B = 8, and
therefore the BT product is always equal to unity for a single FFT transform
result. It can be shown (Ref.4.8) that the same applies even when a time
weighting function is used, as the increased bandwidth is exactly compensated
by the reduced effective length of the time record.

Thus, a higher BT product can be achieved by averaging a number of
individual spectra together. The total BT product is simply the number of
independent records averaged together, and this value can be inserted (instead
of BT,) in Eqn.(3.9).

Fig.4.20 shows the results of analyzing a stationary random signal with
different numbers of averages, and illustrates at the same time the meaning of
the standard error ¢, as calculated by Eqn.(3.9).

For rectangular weighting, independent records simply means non-overlap-
ping, but where a time-weighting function is used, as is normally the case, the
situation is a little more complex. The following discussion is based on Hanning
weighting, but could be modified for any time-weighting function.
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Fig. 4.20. Effect of number of averages with a stationary random signal

Fig.4.21 illustrates that when Hanning weighting is applied to non-overlapping
records, virtually half the available data is disregarded. In a statistical sense,
most of this information can be retrieved by averaging 50% overlapping
records, but the overall (power) weighting function will still be non-uniform, with
a 3dB ripple. A calculation method detailed in Ref.4.9 gives a general method
for arbitrary window functions, and for 50% overlapping Hanning functions
indicates that there is a slight reduction in statistical reliability, but for practical
purposes this can be disregarded.

Overlaps greater than 50% generally give a more uniform overall weighting

function, but no appreciable improvement in statistical error. It can be shown
in fact that the overall weighting function is completely uniform for overlapping
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Fig. 4.21. Overall weighting functions for overlapping Hanning windows

Hanning weightings with step lengths equal to 1/3, 1/4, 1/5 ... of the record
length. The first two of these are illustrated in Fig.4.21. For overlaps greater
than 50%, the BT, product can be taken as twice the number of independent
contiguous records in the total signal, i.e. the same as the actual number
averaged with 50% overlap.

4.5.4. Real-Time Analysis

The so-called “real-time frequency” of an analyzer is a parameter which is
often quoted in specifications, so it is as well to define it, and discuss its
importance.

An FFT analyzer is said to be operating in “real-time” when the time taken to
Fourier transform and otherwise process each record is less than or equal to
the time taken to collect the data transformed. it also implies that data is always
being recorded in one memory buffer, even when it is being transformed in
another, so that none of the incoming data goes unprocessed.

From the discussion of Section 4.5.3, however, it will be realised that where
weighting is used, as is normally the case, then effectively half the data will not
be taken into account when processing non-overlapping records. To overcome
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this problem, it is necessary to process 50% overlapping records, which in-
volves twice as much processing for the same data collection time, and thus the
actual real-time frequency is closer to half that usually stated.

In fact, to obtain results the equivalent of a true real-time analysis with
parallel filters (analogue or digital), the overall weighting function must be
uniform, and thus the overlap must be at least 2/3, giving a real-time frequency
1/3 of that usually stated.

On the other hand, it is only very rarely that a true real-time analysis is
required. For stationary signals, for example, any data which is missed is
statistically the same as that processed, and so the only advantage of a
real-time analysis is that it achieves a result with a given accuracy in the
minimum possible time.

Even for non-stationary signals, it is not always necessary to analyze in
real-time; it depends on how quickly the signal itself changes. For machine
run-ups and run-downs, for example, the inertia of the rotor would often limit
the rate at which the signal itself can change, and it is only necessary that
successively analyzed records are not greatly different from each other.

It is only in the case of rapidly changing non-stationary signals, such as
speech, that it may be necessary to analyze in real-time, so as not to lose any
information. It should be: emphasized that this implies that the results must be
further processed at the same rate, at the very least by averaging them
together. Note that such averaging would smear out the variability of the
non-stationary signal, which was presumably of interest. Storing all the results
in a digital memory does not give much advantage over storing the original
signal, and then post-processing it.

The main use of the real-time frequency specification is as a comparative
indicator of analysis speed, and to give an indication of the time required to
obtain a result with a given number of averages (for frequency ranges above
the real-time frequency).

4.6. Hilbert Transform Techniques

As described in Section 2.6, the Hilbert Transform of a time signal can be
carried out by Fourier transformation into the frequency domain, modification
of the phase, and inverse transformation back to the time domain (Fig.2.32).
These operations can readily be carried out in an FFT analyzer, and for
example in Type 2032 (Fig.4.1) the Hilbert Transform is generated for all time
functions. One way of generating an analytic signal, is by making use of the
fact that its spectrum is one-sided, and of double amplitude with respect to
that of the real part alone (Fig.2.36) and this operation can also be carried out
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in an FFT analyzer. For single channel analysis the major applications of the
Hilbert Transform are to do with demodulation (Section 2.6.2), both amplitude
demodulation and phase (or frequency) demodulation. As given in Eqn. (2.55),
a generally modulated signal can be represented as the real part of the analytic
signal A(t) /"), where A(t) represents the amplitude modulation function
(plus DC offset) and ¢ (t) represents the phase modulation signal (plus carrier
frequency component).

A given measured signal a(t) can be demodulated by the following process:
(1) Calculate its Hilbert transform to give &(t)
(2) Form the analytic signal a(t) + j&(t)
(38) Decompose this into its amplitude and phase components A(t)e/®",
A(t) is then the amplitude modulating signal (including DC offset).

(4) Multiply e/®") by e=/27%! to remove the carrier frequency component f,. The
resulting phase function ¢(t) — 2xf,t is the required phase modulation
signal. If it is expressed modulo 27 it may require “unwrapping” to give a
continuous signal, ¢,, (?).

1 ddn (1)

(5) Calculate —

o d to give the frequency modulation signal f,, (t).

If the demodulation is to be carried out on a band-pass filtered signal, the
procedure can be modified slightly, in that zoom FFT can be used for the
bandpass filtration. The complex time signal produced by the zoom processor
(Fig.4.17) is obtained from the positive frequency components only, and thus
automatically represents an analytic signal, frequency shifted by subtraction of
f., the centre frequency of the zoom band. It is thus already equivalent to the
results of step (4) above, in particular if the zoom centre frequency f, is made
equal to the carrier frequency f,. Even in the case of amplitude demodulation,
where the carrier signal is not of interest, the frequency shift has no effect on
the amplitude function A(t).

Some examples will now be given of the practical application of amplitude
and phase demodulation, as carried out using an FFT analyzer.
4.6.1. Amplitude Demodulation

A situation where amplitude demodulation is useful is in the analysis of

signals containing a near-periodic series of high frequency bursts. Such signals
arise from the excitation of high frequency resonances, for example by repeti-
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tive impulsive forces in a reciprocating machine, or faulty rolling element
bearings. The interesting diagnostic information is often contained in the repe-
tition frequency of the bursts, rather than in their frequency content, which
would usually be a composite of all resonance frequencies excited.

Fig.4.22 illustrates for a simple model (where only one resonance is excited)
the results of frequency analyzing such a signal (vibration acceleration as-
sumed). The dotted line represents the energy spectrum of one pulse (repre-
senting the frequency response of a single-degree-of-freedom system). If the
pulses were identical, and perfectly uniformly spaced, the spectrum of the
periodically repeated bursts would be a line spectrum comprising all harmonics
of the repetition frequency /7, with the largest values in the vicinity of the
resonance frequency. The repetition frequency could in principle be obtained by
zooming in this range and measuring the harmonic separation. In practice,
however, there are slight variations between the pulses and also in their spac-
ing, so that the higher order harmonics tend to broaden, and eventually merge.
As an example, a speed fluctuation of 0,1%, would cause merging in the vicinity
of harmonic no. 1000.
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Fig. 4.22. Frequency spectra for an idealised case with repetitive impulses
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If, however, the envelope of the original signal is formed by amplitude
demodulation, then frequency analysis of the envelope signal will reveal the
repetition frequency directly. A speed fluctuation of 0,1%, for example, would
only result in a broadening of this component to 0,1% of the centre frequency.

Figs.4.23 to 4.25 show the application of this procedure to the diagnosis of a
fault in a roller bearing in a paper mill. Fig.4.23 compares baseband spectra (to
12,8 kHz) for a good bearing and one with a localised fault in the outer race. In
the baseband spectra, the fault is revealed by a moderate increase in spectrum
levels in the vicinity of 5,4 kHz, evidently a resonance frequency excited by the
fault. Figure 4.24 shows, however, that a zoom analysis in this range does not
reveal any harmonic structure (harmonic order > 300). The envelope analyses
in Fig.4.25, obtained by zooming in the same frequency range, do however
reveal a periodic burst structure. In the signal from the good bearing, signals
from pneumatic lubricators (at approx. 5,5 Hz) are apparent, while in the signal
from the faulty bearing an additional harmonic series corresponding to the ball-
pass frequency (15,4 Hz) is also present. This is a typical example where the
required diagnostic information cannot be obtained by frequency analysis of
the raw signal.
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Fig. 4.23. Baseband spectra with and without a bearing fault
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Fig. 4.24. Zoom analysis in same band as used for envelope analysis
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4.6.2. Phase Demodulation

A situation where phase demodulation is of interest is in the analysis of
torsional vibrations. If an accurately machined toothed wheel is mounted on the
shaft in question, and a magnetic or other proximity probe arranged to give a
pulse for the passage of each tooth, then phase demodulation of the tooth
passage signal gives a direct measure of torsional oscillations.

In this case, the modulated function is not a sinusoid, but a series of pulses,
having a large number of harmonics of the fundamental tooth-pass frequency.
Each harmonic is modulated by exactly the same phase modulation signal (in
terms of shaft phase angle), although the relative modulation is higher, the
higher the order of harmonic demodulated.

In Fig.4.26, it will be seen that it is only possible to demodulate the signal
around one harmonic, when the sidebands do not overlap with those around the
other harmonics. In practice this means that the maximum zoom band would be
equal to the carrier frequency f,, and that the modulation sidebands do not
extend to more than f./2 on either side. Where the phase deviation g3 is less than
1 radian, the phase modulated signal can be described adequately with two
pairs of sidebands, and thus the maximum number of harmonics which could be
represented would be half the number of sidebands, or /4 of the number of
teeth on the toothed wheel.

Ampl.
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Fig. 4.26. Sideband limitations in demodulating a series of pulses with funda-
mental frequency f,
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Fig. 4.27. Torsional vibration signal for a diesel engine
(a) Phase of the analytic signal
(b) Measured by frequency demodulation and integration

The phase deviation 3 represents the phase deviation of the carrier compo-
nent, so that in terms of the torsional oscillations of the shaft, it must be divided
by the harmonic order of this carrier with respect to the shaft speed. Thus, for
demodulation of the toothpass fundamental, with a 60-tooth wheel, the +180°
scale on which the phase would normally be displayed represents + 3° of shaft
oscillation. It would represent +1,5° if the second harmonic were demodulated,

183



and so on. This provides a means of changing the scaling of the result, though it
should be kept in mind that if 3 becomes larger than 1 radian, more sidebands
are required to represent the modulation, and the number of shaft harmonics
which can be accommodated reduced accordingly.

Fig.4.27(a) shows an example where the phase of the analytic signal obtained
from passage of a 63-tooth wheel is displayed. In this case it was not possible
to make the zoom centre frequency f, coincide exactly with the tooth-pass
frequency f,, and the torsional oscillation signal is superimposed on a small
slope represented by 27 (f,—fi)t. Fig.4.27(b) shows the results obtained from
the same signal by an instrument designed specifically to produce such torsion-
al vibration signals (by frequency demodulation and integration). The two re-
sults are very similar, confirming the validity of the procedure given here.

One way of removing the slope of the phase signal such as that given in
Fig.4.27(a) would be to use “tracking” (see Chapter 6). In this case, the analyzer
sampling frequency is generated from the rotational speed of the shaft in
question and it is possible to force the tooth-pass frequency to coincide exactly
with an analysis line, which then can be used as a zoom centre frequency. The
mean slope can alternatively be removed numerically.
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5. TRANSIENT ANALYSIS

Transients, in particular short transients, are one of the classes of non-
stationary signals described in Section 2.4. There is no clear distinction be-
tween transients and other non-stationary signals, but here they are defined as
signals of finite duration which are to be analyzed as an entity, with no regard to
how they vary with time. Hence, they are considered to have a finite amount of
“energy” (amplitude squared integrated over time) and the spectrum is most
readily expressed in terms of “energy spectral density”. Their length would
generally be of the order of, or even shorter than, the impulse response of the
physical systems to which they are applied or from which they result.

Before the advent of FFT analyzers, transients were analyzed by analog
techniques, and these are treated in Section 5.2, but nowadays FFT techniques
are by far the most powerful, and commonly used, and are thus treated first.
Analysis using digital filters is quite efficient, and sometimes has advantages
over FFT techniques; digital filters are treated along with analog filters in
Section 5.2.

5.1. FFT TECHNIQUES
5.1.1. Short transients

FFT analysis of transients is particularly straightforward when the entire
transient fits into the transform size T without loss of significant high frequency
information (T is inversely proportional to the frequency range selected for the
analysis, see Eqn. (4.1)).

Figure 5.1 shows a typical example (the acceleration response of a simple
structure to a hammer blow) analyzed using the 2032 Analyzer (record length
2 K, or 2048 samples). The signal has effectively died away to zero by the end of
the record (Fig.5.1(a)), while the frequency range chosen (3,2 kHz) includes all
relevant frequency information (Fig.5.1(b)). The units of the time signal (here
denoted U) are m/s?, and the spectrum is depicted as an RMS spectrum with
the same units. This scaling is however dependent on the analysis parameters,
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and should be converted to energy spectral density (ESD) as follows:
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Fig. 5.1. FFT analysis of a short transient
a) Time signal — length 2 K (2048 samples)
b} Spectrum (800 line)

Because rectangular weighting has been used, the bandwidth B is equal to
the line spacing, or resolution, 3 (Table 4.1), which in this case is 4 Hz
(3,200 Hz/800). The record length T (= 1/3) = 250 ms in this case. The squared
RMS values of the left-hand scale must thus be multiplied by the record length T
to convert them from “power” to “energy”, and divided by the bandwidth B to
obtain ESD in the units U?s/Hz. This corresponds to a multiplication by T2, in
this case 1/16s2, and this scale is inserted on the right of Fig.5.1(b). The 2032
analyzer can in fact scale in terms of ESD directly, but since this possibility is
not included in all analyzers, the detailed procedure has been given here.
Rectangular weighting should normally be used in cases such as this, provided
the signal within the record length starts and finishes with zero (thus eliminating
any discontinuity where the ends effectively are joined into a loop, an inherent
property of the FFT process). When making impact measurements on lightly
damped structures, it is common to apply two special windows to the signals
for the following reasons:
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1. The force signal is known to be very short, and a short rectangular window
can be applied to it. This will eliminate noise from the rest of the record,
thus improving the signal/noise ratio of the result.

2. For lightly damped responses, an exponential window can be applied to
force the signal to near zero by the end of the record. It must be recognized,
however, that the results of the analysis will be modified by the extra
damping which this represents; the added damping is very precisely known,
and can be subtracted from the measured results.

5.1.2. Longer Transients

a) Freq y wind hod (ZOOM-FFT)
e.g. a 10K record length allows generation of a
4000 line spectrum from ten 400-line zoomed
spectra. (A 10 times smaller bandwidth requires

a 10 times longer record).

I |

»
>

— l—— Frequency

Zoom range (400 lines)

b

Time window method
Scan’’ average with overlapping
Hanning windows

Time  go0067,

Fig. 5.2. Two methods of analyzing a long transient with an FFT analyzer
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When the transient is longer than the normal transform size for the analyzer,
the analysis can still be performed in one of the ways illustrated in Fig.5.2. It is
simplest if the transient is first recorded in a long memory in the analyzer, such
as would be required for non-destructive zoom (Section 4.4.2).

Using the frequency window method (Fig.5.2(a)), zoom is used to increase
the record length T to greater than the length of the transient.

To obtain the complete analysis, a number of zoom analyses in contiguous
frequency bands must be made, for which reason non-destructive zoom is most
appropriate. Where only real-time zoom is available, the signal would have to
be recorded in an external medium and played back for each zoom analysis.
Because the signal starts and finishes with zero in the (extended) record length,
rectangular weighting should be used. Conversion of the results from mean
square values to ESD is the same as in the preceding section (multiplication by
T?) using a value of T equal to the extended record length (1/83, where (3 is the
line spacing for the zoom analysis).

Figure 5.3 shows the results of analyzing such a signal (obtained by impacting
a lightly damped bell-like object). The results were obtained using repeated
non-destructive zoom .analysis with the 2033 analyzer. This analyzer has a 10 K
(10240 sample) memory, giving a zoom factor of 10 in conjunction with the
normal 1 K transform size. Figure 5.3(a) shows the (envelope of the ) 10 K time
record of length 2s, as analyzed in the 2 kHz frequency range. This was plotted
using the 7509 Controller for the 2308 X-Y Recorder. It is seen that the transient
is considerably longer than the 1 K normal transform size, and thus the method
of Section 5.1.1 could not be used. Fig.5.3(b) is a composite of 10 separate 400-
line zoom analyses in contiguous 200 Hz bands (indicated by the dotted lines).
Note that the results match up perfectly at the junctions of the frequency bands,
because exactly the same data record was used for each. The left-hand scale
shows RMS values of acceleration (U = m/s?) while the right-hand scale has
been converted to ESD in U?s/Hz by multiplying mean square values (U?) by T?2
(in this case 4s?).

Using the time window method (Fig.5.2(b)), a time window such as Hanning is
moved in overlapping steps along the signal (so-called scan analysis), and the
results of each part analysis averaged together. As shown in Section 4.5.3
(Fig.4.21) the results of such a “scan average” will have uniform weighting (at
least along the centre portion of the record) if the step length is made equal to
T/n where T is the transform size (defining the length of the Hanning window)
and nis an integer > 3. It is often most practical to use n = 4 (75% overlap) as
the transform size is always a power of 2, and therefore not divisible exactly by
3. Even though the analysis can be correct in the sense that it has uniform
weighting, the analysis bandwidth will be determined by the Hanning window,
and may therefore be greater than that of the signal itself (now longer than the
window). It is thus not certain that the result can be validly converted to ESD,
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Fig. 5.3. Analysis of a long transient using repeated (non-destructive) zoom

a) Envelope of 10 K time signal
b) 4000-line composite zoom spectrum

although the broader bandwidth does increase the dynamic range of the result

in comparison with the results obtained by zoom.
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Figure 5.4 shows the results of a scan average analysis on exactly the same
signal as in Fig.5.3, and illustrates these points. For most of the spectrum, the
RMS vaues (left-hand scale) are 12 dB higher than the equivalent values ob-
tained by zoom. The ESD scale on the right is correspondingly offset by this
amount (details later). The peaks, however, differ by less than 12 dB, indicating
that the ESD scaling is invalid where the intrinsic bandwidth of the signal is less
than the analysis bandwidth. (The results could, however, be interpreted as
“mean ESD in the band”).
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Fig. 5.4. Analysis of a long transient using scan average on the same signal as
in Fig.5.3(a)

The ESD scaling is achieved as follows:

First, the mean square values should be multiplied by the “effective record
length” to convert them from “power” to “energy”. In this case, it is somewhat
less than the total record length, because of the non-uniform weighting at the
ends of the record. Figure 5.5 illustrates the general overall weighting function
which varies according to the amount of overlap used in the scan average
(Ref.5.1). In this case, 75% overlap (step length T/4) was used, in which case the
effective record length is 9,25 K. Finally, the “energy” results should be divided
by the analysis bandwidth (1,5 line spacings for Hanning weighting) to convert
from energy to energy spectral density.
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In this case the overall difference in scaling factor between zoom (with factor
10) and scan average is:

10 logy (10 X 1,5 X

10
9,25

) = 12,1 dB

(a)
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Fig. 5.5. Overall weighting function for scan averaging of a transient.

(a)
(b)

Overlapping Hanning windows of length T with definition of pa-
rameters m and n.

Overall weighting function with indication of T, and Ty, in terms
of T, m& n.

T is the effective length of the time window for conversion of
power to energy units.

Tqa is the length of the section with uniform weighting within which
the transient ideally should be located
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Note that it can be seen by inspection whether the ESD scaling is likely to be
valid. Spectrum peaks should be roughly 3 times broader than the analysis
bandwidth, and in this case that means a 3 dB bandwidth of 5 lines or more. It
can be seen that this condition is not satisfied here.

Another point to be noted is that the results will only be fully correct if the
signal is entirely located in the section with uniform weighting. From Fig.5.5 it
will be seen that this section is shorter than the “effective record length”, and it
may be necessary to adjust trigger delay times so that the signal is zero for the
first portion of the record (this has been done in Fig.5.3(a) even though it was
not strictly necessary for the zoom analysis).

Specialised analysis of transients is also considered in later chapters, for
example cepstrum analysis in Chapter 8, and both correlation and system
response analysis in Chapter 7.

5.2. FILTER ANALYSIS TECHNIQUES

When a transient signal is applied to the input of a filter, the filter output
signal represents the convolution of the input signal with the filter impulse
response. A typical impulse response for a filter of bandwidth B is shown in
Fig.5.6. The “response time” Ty is approximately 1/B, and the length of the main
pulse 2/B. To include all of the energy in it, it is desirable to integrate over a
length of at least 3/B.

An actual filter output pulse would be longer than its impulse response (by an
amount up to the length of the input transient) but the energy contained in it
would always be equal to the mean ESD in the filter band multiplied by its
bandwidth, and is thus related directly to the required spectral component of
the applied signal. Thus, one way of obtaining the complete spectrum is to
measure the energy of the filter output pulses for a series of filter positions
covering the desired frequency range. An alternative procedure, somewhat akin
to FFT analysis, is to record the transient on a loop (tape loop, or circulating
digital memory) from which it can be played back repeatedly and analyzed as a
periodic signal.

The signal can be analyzed in one pass by a bank of parallel filters, (such as
in a digital filter analyzer) or one filter can be moved sequentially to each
frequency to be covered. This is the most common procedure using analog
filters.

Transient analysis with a real-time digital filter analyzer such as the B & K
Type 2131 has the advantage compared with FFT analysis that it is better
adapted to constant percentage bandwidth analysis, in particular 1/3-octave
analysis. It is thus treated first, although sequential analysis using analog filters
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Fig. 5.6. Typical filter impulse response

(which has now largely been superseded by FFT analysis) is included in a later
section for the sake of completeness.

5.2.1. Digital Filter Analysis of Transients

Assuming an analyzer such as the B & K Type 2131 which has constant
percentage bandwidth filters covering a 4-decade frequency range, the filter
bandwidth varies widely with frequency. For a given input signal, the filter
output signal thus also varies considerably with frequency. Ideally, the energy in
the output pulse from each filter would best be measured using running linear
integration with an averaging time longer than the longest pulse, The correct
result would be the maximum output value of the averager, which would be
available the whole time that the entire pulse were contained within the averag-
ing time, and which could be retained by a “Max.-hold” circuit after the aver-
ager. Running linear averaging is extremely difficult to achieve in practice,
however, even by digital means, and with the Analyzer Type 2131 it is necessary
to choose between running exponential averaging and fixed linear averaging.
Even so, it is useful to study the concept of analysis using running linear
averaging, in order to compare it with exponential averaging.
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Fig. 5.7. Passage of a transient signal through an analyzer comprising a filter,
squarer, and averager (alternatively running linear averaging and ex-
ponential averaging). The dotted curves represent the averager im-
pulse responses. T, = averaging time. RC is the time constant for
exponential averaging. € is the error in peak response

Figure 5.7 traces the passage of a typical transient signal (an N-wave) of
length T, through an analysis system consisting of filter, squaring circuit, and
alternatively a running linear averager, or exponential averager. The situation is
depicted both for a wideband filter (where T; << T) and for a narrow band
filter (where Tz >> T,). For the wideband filter, the filter output signal follows
the input signal more closely, and its length is dominated by T;; for the narrow-
band filter the output signal approaches the filter impulse response, with a
length dominated by T;. The averaging time T, is made longer than the total
length of the filter output puise in both cases.

Note that the impulse response of the equivalent exponential averager (with
averaging time T,) has a peak value twice that of the linear averager (as shown
in Fig.3.15). On the other hand, because the exponential averager “leaks”
energy at a (maximum) rate of 8,7 dB/T,, the peak output from the averager is
somewhat less than the true peak output corresponding to the impulse re-
sponse. However, the error ¢ will be less than 0,5 dB if T, is made at least 10
times greater than the effective length of the filter output pulse (7, + Tg).

In the case of the 2131 (or similar) Analyzers, it is possible to use fixed linear
averaging, but this must be initiated just prior to the arrival of the transient. This
could in principle be achieved by passing the signal through a delay line at the
analyzer input, or if the signal is recorded in an external medium (for example a
tape recorder) a trigger signal can be inserted (for example on another chan-
nel). This was the procedure used in the following analyses.
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Fig. 5.8. 1/3-octave transient analysis with different averaging times

It will be found that it can be an advantage to have the signal recorded
externally, as it may be necessary to analyze it in two passes, in order to extract
all information from it. Fig.5.8 (Ref.5.2) shows for example the analysis of a
220ms N-wave (sonic boom) using averaging time T, = 0,5s. This is only valid
down to about 50 Hz (T, + 3 T = 0,48s) but on the other hand includes
frequencies up to 5 kHz. Fig 5.9(a) shows an analysis of the same signal with T,
= 8s so as to include all frequencies down to 1,6 Hz (T, + 3 Tz = 8,3s). Because
of the 12 dB loss of dynamic range with this longer averaging time, all the
frequency components above 500 Hz have been lost. This result (with scaling
adjusted by 12 dB) is given as a dotted line in Fig.5.8, and shows that the two
results are identical over the mutually valid range. Fig.5.9(c) shows a 1/12-octave
analysis obtained by four passes of the same signal, with T, = 8s. This gives a
6 dB loss of dynamic range, and is only valid down to 6,3 Hz (T, + 3Tz = 8,5s)
but in the frequency range from 6,3 to 250 Hz it gives more detail of the
spectrum than the 1/3-octave analysis. Finally, Fig.5.9(b) shows a 1/3-octave
analysis made with exponential averaging (T, = 8s) and “Max. Hold”, and this
confirms that the result is approx. 3 dB higher than for linear averaging over
most of its range, but the difference reduces down to 2,5 dB at 8 Hz, the lowest
valid frequency (T, + Tg = 0,765s).
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Fig. 5.9. Comparison of analysis methods

Another possibility, which will sometimes be of advantage, is described in the
Addendum to Ref.5.2. It makes use of the “constant confidence” mode of the
2131 analyzer, where the averaging time is varied in inverse proportion to the
frequency (thus giving an approximately uniform BT, product). This makes it
possible to ensure that the averaging time is always greater than 10 Ty, but
there will be an upper limiting frequency beyond which it becomes less than T,.
Fig.5.10 compares such an analysis with that for T, = 8s, and illustrates that an
additional two valid frequency bands are obtained in this case. The scaling is,
however, different for each octave, because of the varying averaging time.

It will rarely be valid to scale constant percentage bandwidth analyses of this
kind in terms of ESD (except in the limited frequency range where B <<<< B,y)
but the results can be converted to an “energy” spectrum (per filter bandwidth).
The conversion factor to be applied to the measured “power” is equal to T, for
linear averaging, and T,/2 for exponential averaging.
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Fig. 5.10. Compatrison of results for constant T, vs. constant BT, product

5.2.2. Sequential Filter Analysis

There are three main techniques which can be used (here denoted Methods A,
B, C) and Method B has two variants depending on the type of detector used.
Figure 5.11 illustrates the differences between them, in particular as regards the
choice of analysis parameters such as bandwidth, averaging time and sweep
speed. The optimum choice in a given situation depends on a number of
factors, and should hopefully be clarified in the following discussion:

5.2.2.1. Method A

In this technique, the signal is played back repeatedly and analyzed as a
periodic signal. As with the FFT process, the spectrum obtained will then
theoretically be a line spectrum, but the individual lines (correctly scaled)
represent the ESD spectrum at the frequency of the line. In this case, it is
possible (and desirable) to choose a filter bandwidth B equal to or greater than
the line spacing 1/T,, in order to avoid resolving the individual lines, which only
confuse the issue. The line spacing must in any case always be less than the
intrinsic bandwidth of the transient (B,;) because its effective length T, is
obviously less than the loop length T,,, which defines the periodic time.
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Fig. 5.11. Analog methods of transient analysis. Choice of analysis method and

parameters.

B = filter bandwidth. B.,; = effective bandwidth of transient.
Trep = loOp repetition time. T,

Tp = filter response time (=~ /8)

averaging time

T.x = effective length of transient (=~ 1/B.)
T, = Dwell time per bandwidth. i.e. sweep speed = B/,
In general, the sign >> means “at least 3 times greater than”

Just as for FFT analysis, the loop length T, should ideally be chosen to be
somewhat longer than the transient itself, so that the signal value is zero at the
loop junction. Note that with analog tape loops, the following problems have to

be taken into account:

1. The tape splice itself may generate a noise puise; this is particularly the
case with FM recording, because the carrier frequency component will
almost certainly have a discontinuity at the splice, even if the signal value is
zero on either side. It is best to use a splice noise suppression circuit to

window it out.
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2. There may be physical limitations on the minimum loop length, which make
the analysis time considerably longer than it need be.

The averaging time T, should be chosen so as to treat the (periodic) signal as
stationary, in other words to obtain a stable output from the detector. If the filter
bandwidth is of the same order as the line spacing, T, can be as little as 3 times
the loop repetition time T, (because the filter impulse response will be of the
same order as T,,. Where the filter bandwidth is considerably greater than the
line spacing, the signal to the detector will be a series of pulses, which in the
limit (Fig.3.17) may require the ratio to be as high as 16. It is suggested that a
factor of 3 be tried at first, and then increased as necessary to limit fluctuations.
The dwell time, T,, and sweep speed can then be chosen as for other stationary
signals (Section 3.6.2).

Calibration of the results is very similar to the case of FFT analysis. The
measured “power” must be multiplied by the loop repetition time T, to convert
it to “energy” (per filter bandwidth) after which it can be divided by the filter
bandwidth B to convert it to ESD (provided B < <C Bgg).

The advantage of this method is that familiar techniques for analysis of
stationary signals can be used, and that the results are not very sensitive to the
choice of averaging time and filter bandwidth, provided the minimum require-
ments specified here are adhered to.

5.2.2.2. Method B

This method is probably the most efficient, but is limited to analysis with
narrow constant bandwidth filters. It is based on the fact that if the filter
bandwidth Bis chosen to be appreciably smaller than the effective bandwidth of
the transient, By, the filter output will always resemble its impulse response,
with oscillation frequency corresponding to the tuned centre frequency, and
peak amplitude corresponding to the required spectral component (Ref.5.3).
Fig.5.12 (which is similar to Fig.5.6) shows a typical filter impulse response, and
indicates the three parameters which are of interest in this analysis method.
Vpear is the maximum short-term peak value of the output pulse, Vgys is the
maximum short-term RMS value, and V,, represents the RMS value assuming
that the total energy in the output pulse is distributed over the length of the
main pulse (2/B). Because the oscillations inside the envelope are approxi-
mately sinusoidal, Vgys =~ Vpeak/VZ and assuming that most of the energy is in
the main pulse, and that its envelope is roughly sinusoidal:

Voir =~ V.A?MS/VE ~ peak/2 (5.1)
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The requirement that B << B, will be satisfied if:

B < ! (5.2)
5 Teﬂ
where T is the effective length of the transient. With experience this can be
estimated by eye with sufficient accuracy, but a conservative estimate will
always be obtained by setting it equal to the total length (the limiting case
corresponding to a rectangular pulse or tone burst).

The loop repetition time T, should then be selected from the expression:
Trep > 3/B (5:3)

to ensure that successive filter output pulses are sufficiently well separated.
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Fig. 5.12. Filter impulse response with definition of the terms V,eu, V,ms and
Veff-

A peak detector, reset for every playback of the loop (for example triggered
by the loop junction) can be used to measure V. Alternatively, an RMS
detector can be used to measure Vg5, provided that the averaging time fulfills
the following requirements:
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1. The averaging time must be large enough to reduce ripple due to the filter
ringing frequency f.%, and from Fig.3.16 this will be achieved if:

T, > 38/f, (5.4)

2. The averaging time must be appreciably shorter than the filter response
time Ty, so that the short-term RMS value follows the short-term peak value
(though smaller by a factor of /2, or 3 dB). This will be the case within about
1 dB for:

1

T, < —
A7 3B

(5.5)

From Expressions (5.4) and (5.5) it will be seen that RMS detection can only
be used for frequencies greater than 9 or 10 times the bandwidth. This limitation
does not apply to the Analyzer Type 2010, or others with a fixed filter output
frequency (see footnote).

For very small values of the repetition time T, it should be checked that the
recorder writing speed does not limit the registration of the spectrum. The pen
will be able to rise and fall over at least a 20 dB range if the following expres-
sion is satisfied.

100
Trep = W (5.6)
where W is the writing speed corresponding to 100 mm paper. As an example,
for W = 1000mm/s, the minimum value of T, is 0,1s.

The dwell time T, (the time required to sweep a frequency range correspond-
ing to one bandwidth) should not be less than the repetition time T, in order
that samples of the spectrum are not separated by more than one filter band-
width. The filter bandwidth is in any case constrained by Eqn. (5.2) to be
considerably less than the bandwidth of the transient being analyzed. The
sweep speed can then be calculated by definition as B/T,.

In order to scale the results, use can be made of the following relationship
between the frequency characteristic and impulse response of the filter (Parse-
val’s theorem):

total energy in frequency = total energy in time

Thus, ESD x B = V2,- %
2
or, ESD = V2, - - (5.7)

§ Note that with the B & K Analyzer Type 2010, the filter output frequency is constant (750 Hz or
30 kHz) independent of the filter centre frequency. The shortest averaging time (0,1 s) will therefore
always damp out ripple.
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Making use of Expression (5.1) this can be related to the measured parame-
ters Vpeak and VRMS as:

v? V2
ESD ~ 2% = ZAMs 5.8
2 B2 B2 (58)

This expression applies exactly for an ideal filter (Ref.5.3) but may require
modification for a practical filter. The ratio between V.., Vgys and V., can be
established by analyzing a known signal such as a rectangular pulse or tone
burst. The relationship between V., and V., should be constant for a given
filter characteristic, while the relationship between the measured value of Vg5
and V4 Will be influenced to a small extent by the ratio of T, to T (i.e. the
BT, product) but should be constant for a given ratio (See Expression (5.5)).

5.2.2.3. Method C

Like Method B, this method obtains a separate estimate of the spectrum for
each playback of the transient, but there is no restriction on bandwidth; the total
energy in the filter output pulse is measured independent of the pulse shape just
as for digital filter analysis (Section 5.2.1). Thus, this method can be used for
constant percentage bandwidth analysis, e.g. 1/3-octave analysis.
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Fig. 5.13. Valid range for the factor impulse length: averaging time (Tg/T,) for
RMS detectors with different crest factors C
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The analysis is very similar in principle to that illustrated in Fig.5.7, using
exponential averaging, with the additional complication that it may be neces-
sary to take account of the crest factor capability of the detector (if a Wahrman
detector is used). Figure 5.13 (from Ref. 5.4) illustrates the departure of mea-
sured results from the theoretical values against the ratio Tz/T,, for a range of
values of crest factor C. In the derivation of the diagram, T was the length of
square pulses applied to the detector, but in practice the effective length of the
filter output pulse (T, + Tz) can be used. The dotted line in the upper part of
Fig.5.13 (0,1 < T/T, < 1) shows the effect of error € in Fig.5.7, and confirms
that the error is less than 0,5dB for Tz/T, < 0,1. A larger value of this ratio
could be used, however, provided compensation were made in accordance with
the diagram.

It is perhaps worth noting that the (now obsolete) real-time 1/3-octave Analyz-
er Type 3347 had detectors with a crest factor capability of 5. From Fig.5.13 it
can be seen that it can still be used for impulse analysis over a range of the
ratio T/ T, between about 0,03 and 0,3 with a scaling adjustment of about 1 dB.

For swept frequency analysis, a suitable value of T, can be selected using
Fig.5.13, after which the loop length T, can be selected according to the
following expression:

Trep = 3 Ty (5.11)

This will ensure that the detector can fall at least 20 dB between successive
playbacks, keeping in mind that the maximum rate of fall is 8,7 dB/T,. Note that
this requirement is automatically satisfied in Method B.

5.2.2.4. Examples

To assist in assessing the influence of the various factors which play a role
and to compare the pros and cons of the various analysis methods, a transient
signal was analyzed in all of the four ways illustrated in Fig.5.11.

The signal used was a tone burst of length approx. 10 ms, recorded in a 7502
Digital Event Recorder with 10 K memory. The circulation time of the memory
(for input sample rate 100 kS/s) was approximately 100ms. The frequency of
the tone was approximately 1 kHz, but in fact adjusted to 976,6 Hz to compen-
sate for the actual pulse length 10,24 ms (and repetition time 102,4ms) thus
ensuring that there were exactly 10 periods in the tone burst. The RMS level of
the sinusoidal part was 3,16 V (see Fig.5.14). The analysis setup is shown in
Fig.5.15, but it should be noted that the Measuring Amplifier Type 2607 was not
always used; in some cases the DC output of the 2010 was taken directly to the
Level Recorder Type 2307.
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Fig. 5.14.
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Fig. 5.15. Instrument set-up for example analyses

The four different methods will now be discussed in some detail.

1) Method A (cf. Section 5.2.2.1)

The tone burst occupied 10% of the memory of the Digital Event Recorder, so
that there was a good chance that there would be no problems with crest factor.
The total RMS level of the periodic signal was 10 dB below that of the sinusoidal
section (i.e. 1 V) and peak value was 3,16 |2 ~ 4,5V, and therefore the crest
factor of 4,5 for the unfiltered signal was within the limit of 5 for the 2010 and
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2607. The crest factor of the filtered signal would be even less, since as
mentioned in the next section, the bandwidth was so chosen that the filter
response time was equal to the repetition time and thus the filter output signal
almost stationary.

i

The choice of the various analysis parameters was made as follows:

1. T, = 100ms. This corresponded to the memory length of the 7502, and
gave a spectral line spacing (1/T,,) of 10 Hz, which was suitably narrow
with respect to By, (= 1/Tz = 1/0,010s = 100 Hz) for the tone burst.

2. B =10 Hz. This just satisfied the requirement that B > 1/T,,, (=1/100ms =
10 Hz). As already mentioned, it also satisfied the other requirement, viz.
B < B4, so that expression of the results as Energy Spectral Density was
valid.

3. T, =0,3s. This represents a ratio to T, of 3, but was found to be adequate
to damp out fluctuations because the filter response time was of the order
of the repetition time.

4. T, = 0,6s. This was chosen as twice the averaging time (K, = 2 in Table 3.5)
as this is suitable for the 2010).

5. Bg, = 0,75mm. This resulted in a suitable total length for the total analysis
(= 200mm) and could be obtained with the 2010 and 2307. The resulting
paper speed (Eqn.(3.21)) was thus given by

B, 0,75mm

P<—=9=—_"—_— " Select 1mm/s
s 0,6s

The resulting analysis is given in Fig.5.16.

6. Scaling — The voltage corresponding to Full Scale Deflection (FSD) on the
recording paper was 0,32 V, corresponding to a power of 0,1 V2. The analyz-
er bandwidth was 10 Hz, and therefore the maximum PSD of the result was:

0,1V2

= 0,01 V3/Hz
10 Hz

The repetition time T, was 0,1s and thus the final result as an Energy
Spectral Density (ESD) was:

0,01 V3/Hz - 0,1s = 0,001 V2s/Hz
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This agrees with the theoretical calculation as follows:

Energy in pulse = 3,162V2 - 0,01s = 0,1 V3s

Effective bandwidth B, =
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Fig. 5.16. Analysis as a periodic signal (Method A)

(2) Analysis using Method B with Peak Detection (cf. Section 5.2.2.2.)

The various analysis parameters were chosen as follows:

1. B = 3,16 Hz. This more than satisfied Eqn.(5.2) which requires B < 20 Hz,
but it was desired to compare the results with those for short-term RMS
averaging (next section) and this required that the filter response time Tj,
(320ms) was somewhat longer than the averaging time (100ms minimum).
Thus, this analysis was considerably less efficient than it could have been,
On the other hand, it was possible to allow the detector to fall with a time
constant corresponding to T, = 0,1s rather than triggering the “reset”
function, which would have required a more complicated setup.

2. T, = 1s. This satisfied the requirement of Eqn.(5.3) of T,,, > 3/B = 3/3,16 =
0,95s and, incidentally, at the sweep speed used, gave successive peaks
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separated by less than the pen thickness, so that the envelope of the peaks
was very well demarcated.

3. With the narrower bandwidth, B,; = 0,24 mm and thus in order to satisfy the
requirement T, = T,, the paper speed would have to be less than

0,24 mm/s. However, in this case it was decided to make the paper speed
0,3mm/s, resulting in Tp, = 0,8s

The justification for this was that the analyzer bandwidth was so much
smaller than that of the function being measured (3 vs 100 Hz) and the steps
between successive peaks (0,3mm) were less than the line thickness. The
resulting analysis is depicted in Fig.5.17.

jEE EEEE NSNS S S S S GEE A SN SN E SN EE NS EEEE SRR NN LSS N

Broel & Kjer
B =3,16 Hz
T =1s e —
T, = 100 ms {determining fall rate _———————
- of peak detector) ————
T T
0 1k 2k Frequency (Hz} 770464

Fig. 5.17. Analysis by Method B using peak detection

4. Scaling — The measured peak voltage corresponding to FSD was 0,14 V.
Using Eqn.(5.8) the corresponding ESD is

2 2y/2 2
Viear _ _ 0,14%V = %02V7s 4001 v2s/Hz
282 2 - 3,16%Hz? 20 Hz

as before.

(3) Analysis using Method B with Short-term RMS Detection (cf. Section
5.2.2.2)
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1. Analysis parameters were exactly the same as for peak detection as de-
scribed in the previous section with the exception that the peak detection
was replaced by RMS detection with T, = 0,1s. The resulting analysis (with
unchanged amplification) is depicted in Fig.5.18.

I N N E N NENENEENENNFNNFNEENEENENENENENNIINENE N SFE TN TN B TR E NN EE
& Kiaor

Frequency {Hz) 770465

Fig. 5.18. Analysis using short-term RMS detection
(same amplification as Fig.5.17)

2. Scaling — As discussed in connection with Eqn. (5.5), because the filter
response time Ty (= 300ms) is only 3 times the averaging time T, (100 ms)
the recorded result is 3,5 — 4 dB below that for peak detection compared
with the expected 3 dB. If it had not been possible to calibrate the system,
the result obtained by adjusting by 3 dB would have been very close to
correct.

(4) Method C (cf. Section 5.2.2.3)
Parameters were selected as follows:

1. B = 10 Hz. In contrast to the analysis just discussed, it was no longer
necessary to have the filter response time longer than the averaging time,
and in fact an advantage to have it as short as possible. 10 Hz was the
largest standard bandwidth satisfying the condition that it was less than 1/5
the bandwidth of the function itself. It also allows a more direct comparison
with the results of Fig.5.16.
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2. T, = 0,3s. This is at the lower limit of the allowable range indicated in
Fig.5.13 for a crest factor of 5, but is acceptable in this case where it is
known that the effective length of the filter output pulse is the same for all
frequencies (determined in all cases by the filter response time because of
the constant bandwidth.) In a physically generated transient this is not
certain (the high frequencies have a tendency to die out more rapidly) and
moreover for constant percentage bandwidth the filter response time varies
with frequency, so that it is advisable to choose the ratio T/ T, closer to 0,1.

3. T, = 1s. Because of the relatively narrow bandwidth it was sufficient to
satisfy Eqn.(5.11), i.e. T, 23T,.

4. Taking Tp = 1s to make it at least equal to T, the maximum sweep speed is
given by B,,/Tp = 0,75mm/s and thus 0,3mm/s was again selected.

The resulting analysis is shown in Fig.5.19. The amplification was exactly the
same as for the analysis by Method A (Fig.5.16).

aEEEEENSESENEEESN S S S S SN SIS SN S ENEEEAE NS NN E N EEDNN
Briel-& Kjaar
B =10Hz
T =1s
TA = 300 ms
|
— . T =
0 1k 2k Frequency (Hz) 770466

Fig. 5.19. Analysis using Method C
(Same amplification as Fig.5.16)

5. Scaling — In comparison with the analysis of Fig.5.16, for which the band-
width was the same, the difference in scaling would arise from the fact that
the measured PSD units should here be multiplied by T,/2 (i.e. 150ms)
whereas in that case the multiplying factor was the repetition time T,
(100 ms). From this, it would be expected that the results should be 10 logy,
(1,5) = 2 dB below those of Fig.5.16, instead of the actual 4 dB. The major
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part of the difference can be explained by reference to Fig.5.13, where for
T:/T, = 0,3 (as applies here) the actual detector characteristic is approx.
1,5 dB below the theoretical line for “Ideal RMS, RC-averaging”. It should be
remembered that in a practical case the ratio Tg/T, should have been
chosen smaller, but it was difficult to find an example on which all four
methods could be used, keeping in mind that they are best adapted to
different situations.



6. NON-STATIONARY SIGNALS

The type of non-stationary signals treated in this chapter, in contrast to the
short transients of Chapter 5, are those where one is interested in the change of
spectral information with time. One example would be speech, another the
vibration signals from a machine during run-up or run-down in speed. The only
technique considered here is the use of window functions to window out short
sections of the overall signal which are near stationary or which contain
isolated events. By moving such a window along a longer record, in overlapping
steps, the variations of spectral information with time can be determined.

Cyclic signals, for example the vibration and sound from reciprocating ma-
chines such as diesel engines, represent a special case, where in the long term
they may be considered stationary, but where short-term variations within the
cycle are of interest. With such signals it is possible to average the results over
a number of cycles, which often would be necessary to obtain a stable, repeat-
able result. This type of analysis is considered in Section 6.1.2.

With machine run-ups and run-downs, it is sometimes desirable to express
the results as an “Order Analysis”, where the frequency axis is changed to one
of harmonic order, independent of shaft speed. The various ways of achieving
this are discussed in Section 6.2.

Time windowing techniques are generally suitable for the types of applica-
tions mentioned here. In some specialised cases, the variations may be too
rapid to be resolved in this way, and an alternative technique based on the
“Wigner Distribution” (Ref.6.1, 6.2) may be of advantage. The reader is referred
to the cited literature for further information on the use of the Wigner distribu-
tion

6.1. SCAN ANALYSIS
Scan analysis is the term given to the technique whereby a window function
such as Hanning is scanned along a record in overlapping steps, and a short-

term spectrum obtained for each position. An example was given in Fig.2.25,
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showing how a short section of a speech signal (the vowel “i” in the word “this”)
could be isolated by a window in this fashion, and analyzed separately. The
results are somewhat dependent on the choice of the analysis parameters such
as frequency range, window type, window length and step length, and so these
matters will be discussed first.

6.1.1. Choice of analysis parameters

As regards choice of window type, any smoothly rounded window function,
such as Hanning, could be used, although Hanning is probably the best choice
for the following reasons:

1. It is simply generated, and available in most analyzers.

2. It has a relatively narrow bandwidth, compared with most other specialised
windows (Table 4.1).

3. The selectivity of the filter characteristic is less likely to be important (as
compared with stationary signals) as it is likely to be limited by the signal
itself (i.e., minor non-stationarity within the window).

4. With overlapping Hanning windows, the individual spectra can be averaged
together to obtain the spectrum of a larger portion of the signal with uniform
weighting (Fig.4.21).

Consequently, most of the remaining discussion will assume the use of Hanning
windows.

The length of window should be chosen with respect to the following criteria:

The window should be sufficiently short that the signal within it does not vary
greatly. For continuous signals such as machine run-downs or vowels in
speech, this means that the windowed portion should be quasi-stationary. For
impulsive signals such as reciprocating machine vibrations, or plosive conso-
nants in speech, the window length should be short enough to isolate the
various impulses from each other, or from the continuous sections. On the
other hand the window should not be so short as to restrict the resolution of the
analysis (beyond that determined by variations in the signal itself) and should
be at least twice as long as individual impulses. The effective length of the
window (for Hanning weighting) can be taken as half the total length T.

To take the example of speech, where vowels typically have a duration of
100-200ms, and plosive consonants < 10ms, a suitable choice of effective
window length is 30-50 ms. Appropriate choice of window length can often best
be made by visual inspection of the signal.
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Note that where the internal Hanning window of the FFT analyzer is used, its
length is selected indirectly by choice of the frequency range. On occasion it
will be found that the latter has to be selected higher than otherwise required in
order to obtain a sufficiently short window; in such cases the portion of the
spectrum outside the range of interest can simply be dropped from the display.
In the case of the analyzers Types 2032/2034 the length of window can addition-
ally be varied:

(a) by the use of “zero padding”, which sets it to half the length for the same
frequency range.

(b) arbitrarily, by using the “Special Parameters” to tailor an appropriate win-
dow (shorter than the record length T).

With regard to choice of step length, the following factors should be taken
into account:

(1) if it is made equal tc the effective length of the window (i.e. 50% overlap) the
successive analyses will be effectively uncorrelated, and would constitute
the minimum number of spectra to represent the entire signal with no loss of
information.

(2) For 3-dimensional (i.e. “waterfall”) displays of arbitrarily varying signals
(e.g. speech) it will normally be of advantage to reduce the step length to
less than half the maximum suggested in (1) (i.e. overlap > 75%). Thus,
successive analyses will be partially correlated, which aids visual interpreta-
tion of 3-dimensional diagrams (see later for examples).

(3) Where the signal itself is fairly predictable, e.g. machine run-downs, it is not
necessary to satisfy the requirements of (2), and in fact the step length may
even be greater than the window length. The individual spectra in a waterfall
diagram, for example, are often separated by uniform increments in shaft
speed, which may represent time intervals considerably longer than the
window length. In fact, for slowly varying machine signals, it may be of
advantage to use averaging (normally exponential averaging over, say, 8
spectra) in order to smooth random components in the spectrum. This must
be balanced against the smearing of discrete harmonic components due to
the effectively longer window obtained.

6.1.2. Cyclic signals

Figure 6.1 shows a typical cyclic signal, the vibration signal from a diesel
engine, and indicates how it can be analyzed to determine the way in which the
spectrum changes throughout the cycle. The original signal (Fig.6.1(a)) is seen

to be dominated by a series of impulses (the dominant ones corresponding to
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Fig. 6.1. Principle of analysis technique for cyclic signals

the firing of each cylinder) but these can be separated from each other by
suitable choice of a Hanning window as indicated. A one-per-cycle trigger
puise (Fig.6.1(b)) is used to position the Hanning window in a particular part of
the cycle, using a variable delay after trigger to vary its position (Fig.6.1.(c)).
Even in one position, it is found that the spectra from individual cycles vary
somewhat, but if a number are averaged together (e.g. over 32 cycles) the
results become stable, and typical of that part of the cycle (Fig.6.1(d) & (e})).

Figure 6.2 shows the results of such an analysis (averaged over 64 cycles),
displayed in a 3-dimensional “waterfall” diagram. Variations in time can clearly
be seen (for example, the firing of the individual cylinders), but in addition the
breakdown in frequency gives the possibility of separating events (e.g. com-
bustion and piston siap) which occur at roughly the same time, but which have
different frequency contents.

The analysis parameters for Fig.6.2 were selected as follows: The engine was
a 4-cylinder, 4-stroke diesel engine running at 1500 rpm (750 cpm or 80 ms cycle
time). Thus, the individual firing strokes were separated by about 20ms, and by
viewing the time signal on the analyzer screen it was determined that the
individual pulses had a length of =~ 2ms. The transform size was therefore
chosen to be 8 ms (effective length 4 ms, representing 5% of the total cycle).
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This in fact involved playing back the signal (which was recorded on an FM tape
recorder) 10 times slower than recorded, and analyzing it in the 5 kHz frequency
range (corresponding to 50 kHz in the original signal). Because the signal only
contained information up to 20 kHz, only the first 160 lines of the 400 obtained
(from the 2031 Analyzer) were used for displaying the results. The step length
was set to 0,2 T giving a total of 50 spectra for the whole cycle.

Legend: TDC 3(2)
=top-dead-centre
f‘ Cyl. 3 (firing stroke)

‘ [ & Cyl. 2 (exhaust stroke)

|J \
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0 Frequency 20 kHz

> TDC 1(4)
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S - TDC 2(3)
)

790964

Fig. 6.2. Frequency-time representation of a diesel engine cycle

6.1.3. Spectral Variations with Machine Speed

It is often desired to investigate the way in which machine vibrations (and
sound) vary with shaft speed, and one of the best ways of doing this is to
present the results in a 3-dimensional spectral map, such as illustrated in
Fig.6.3. As indicated, the third axis (which may be inclined as shown, or vertical)
can either be time, or shaft speed in RPM; it depends on how the individual
spectra are captured. Such a 3-dimensional spectral map is often referred to as
a “waterfall” or “cascade” plot, although this term is sometimes reserved for a
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Fig. 6.3. 3-Dimensional spectral map or “Waterfall” plot

live display, continuously updated as new spectra are generated. When the
third axis represents shaft RPM, the spectral map is sometimes referred to as a
“Campbell diagram”, although strictly speaking a Campbell diagram has fre-
quency axis vertical, RPM axis horizontal, and spectral amplitude indicated by
the diameter of a circle (or square) at each point in the diagram (Fig.6.4).

Figure 6.5 is a spectral map (with shaft speed as the third axis) which
illustrates the advantage of this type of display. It was obtained during the run-
up of a small electric motor, with spectra taken at shaft speed intervals of
2,5 Hz between 20 Hz (1200 RPM) and 75 Hz (4500 RPM). This illustrates how
the various harmonics fall along radial lines, and can thus be separated from
constant frequency components (such as resonances and mains frequency
related components) which follow lines parallel with the RPM axis (in this case
vertical). This type of display is ideal for determining whether a noise or
vibration problem within a particular speed range is primarily due to a large
forcing function (and if so, which one) or to excessive amplification by a
structural resonance.

The individual spectra for such a plot can basically be captured in three

different ways, depending on the rate of acceleration (or deceleration) of shaft
speed.
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Fig. 6.4. Example of a Campbell Diagram

Ideally, the shaft speed should be constant at the respective RPM, as the
spectrum is taken. Thus, all harmonics will appear as discrete frequency
components whose amplitude in the diagram directly indicates the strength
of the component. This is sometimes possible during the very slow start-up
of such machines as large steam turbines. Linear averaging can even be
used to smooth out any random components.

For intermediate rates of acceleration, the spectra can be captured (by
transfer to a digital memory) at predetermined intervals of shaft speed,
either automatically, or manually. The shaft speed can either be determined
from the signal itself (by selection of the first harmonic), by simultaneous
analysis of a tachometer signal (e.g. a pulse once per shaft revolution) or
from a separate shaft speed indicator. Note that even where the frequency
range is within the real-time capability of the analyzer, so that the analysis
speed does not limit the generation of spectra, it may be the time required
to transfer the spectra to a digital memory which limits the rate of accelera-
tion of shaft speed.

For rapid rates of acceleration, even beyond the real-time capability of the
analyzer, it is possible to capture the time signal in a long memory, and
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6.5. Spectral map with shaft speed as third axis, showing separation of
harmonic from constant frequency components

analyze it by scan analysis after the event. As an example, in the 200 Hz
frequency range, the 10 K memory of the 2033 Analyzer represents 20
seconds of signal, which would often contain the most important part of a
run-down. Where the signal has been recorded on tape, different 20 s
sections could in fact be analyzed successively. Figure 6.6 was obtained by
analysis of the signal from the run down of a small electric motor. In order to
arrange the diagram with the lowest speeds (and signal levels) first, the
individual spectra were selected manually, by scanning backwards from the
end of the record. Note that because of the rate of acceleration, the higher
harmonics (in particular) no longer appear as discrete frequencies, and are
smeared over a number of lines which increases with the harmonic order.
Thus, the height of the peak does not directly represent the strength of the
component; it would be necessary to integrate over the whole of the distrib-
uted peak to achieve this (note that with the analyzers Types 2032/2034, this
can be done for individual peaks using the “ATOTAL” cursor indication).
This reduces the utility of this display method to some extent, in cases such
as this where machine speed varies along the window length.
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Fig. 6.6. Spectral map obtained by scan analysis in a 10 K memory, represent-
ing the run-down of a small electric motor

6.2. ORDER TRACKING ANALYSIS

Where one is primarily interested in the behaviour of harmonic orders of
shaft speed (even high orders such as tooth meshing frequencies) then order
tracking analysis will often be of advantage. For one thing it eliminates the
“smearing” problem, referred to in the previous section, by forcing harmonic
components to be located in one analysis line. This is achieved by controlling
the sampling frequency of the analog-to-digital (A/D) converter in synchronism
with the shaft speed; Fig.6.7 illustrates the basic principles.

Fig.6.7(b) shows a hypothetical signal produced by a rotating shaft during a
run-up (in practice, the amplitude would normally also vary with shaft speed).
Fig.6.7(a) shows the samples obtained by sampling it with a constant sampling
frequency (as for normal frequency analysis) and the spectrum resulting from
FFT analysis of these samples. The spectral peak is seen to spread over a
number of lines corresponding to the speed change along the time record.
Fig.6.7(c) shows the samples obtained by sampling the signal a fixed number of
times per shaft revolution (in this case, eight). The samples are indistinguish-
able from those obtained from normal analysis of a constant frequency compo-
nent, and thus the “frequency” spectrum is concentrated in one line.
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Fig. 6.7. Analysis of a fundamental component which is increasing in frequency
(a) Data record resulting from a uniform sampling rate, and its spec-
trum which spreads over a frequency band corresponding to the speed
change
(b) The original time signal
(c) Data record resulting from sampling 8 times per fundamental cycle,
and its spectrum which is concentrated in one analysis line

The signal used to controi the sampling of the A/D converter can be generat-
ed by a “tracking ratio adaptor”, or “frequency muitiplier/divider” which takes a
synchronizing signal (typically a pulse once per shaft revolution) and produces
an output signal whose frequency is multiplied by the set ratio. The choice of
multiplying factor can most easily be determined as follows:

As mentioned in Section 4.5.1., the line number of a particular spectral
component corresponds to the number of periods it represents in the transform
size, N samples. Thus if the fundamental (i.e. first harmonic component) is to be
located in Line No. n,, the multiplying factor, F, by which the fundamental
frequency should be multiplied, is given by

N

F= n_1 (6.1)

so that every period of the fundamental frequency will occupy F samples along
the memory.
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Fig. 6.8. Aliasing problems caused by order tracking (variation of sampling
frequency f;)
(a) Baseband analysis with correct f,
(b) Baseband analysis with f, too high. Spectrum affected by lowpass
filter
(c) Baseband analysis with f; too low. Spectrum affected by aliasing
components (double-hatched area)

As mentioned in Section 4.3.1, when the sampling frequency varies with shaft
speed, problems may be encountered with aliasing, and it is necessary to take
special precautions. Fig.6.8(a) illustrates the situation for normal fixed frequen-
cy sampling with optimal choice of the anti-aliasing filter. For illustration pur-
poses, the case is taken of a 400- line analyzer such as the B&K Type 2033. The
lowpass filter characteristic folds around the Nyquist frequency fy (= fs/2) but is
attenuated by 80 dB before it folds back into the measurement range. If the
sampling frequency, f,, were tied to shaft speed, however, and increased, the
upper part of the spectrum would be influenced by the fixed lowpass filter, as
illustrated in Fig.6.8(b). If f; decreased, the aliasing components could fold back
into the measurement range (as illustrated by the double cross-hatched area in
Fig.6.8(c)) and once again affect the upper part of the spectrum.
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The optimum way of solving this problem is to use a tracking low-pass filter
whose cutoff frequency is also tied directly to shaft speed, but it is difficult to
obtain a tracking filter with such a steep characteristic (120 dB/octave) and it
may be necessary to use one of the following alternatives.

6.2.1. Optimum Choice of Internal Filter

If the analyzer has a series of fixed analog filters in a 2,5,10 sequence (for
example B&K Type 2033), the largest step is 2,5:1 (from 2 to 5). Even so, it will
be found that it is always possible to choose a filter such that at least 60% of the
spectrum (in this case 240 lines) is valid. Consequently, if the multiplying factor
is chosen (using Eq.(6.1)) such that the highest harmonic of interest is located
below Line No0.240, the optimum low-pass filter can be selected at any time
(manually or automatically) dependent on the current shaft speed, and line
numbers above 240 disregarded.

6.2.2. Zoom tracking

For analyzers where'it is possible to select a lower frequency range than that
determined by the internal analog low-pass filters, e.g. using zoom, another
simpler procedure can be used. This technique can be used where the maxi-
mum frequency to be included in the analysis (the maximum shaft order at
maximum shaft speed) is at least a factor of 4 below the maximum frequency of
the analyzer. Figure 6.9 illustrates the principles.

Figure 6.9 can be applied directly to the Analyzers Types 2032/2034 but the
same principles can be applied more widely. If a fixed lowpass filter with cutoff
frequency 6,4 kHz! (1/4 of the maximum frequency 25,6 kHz) is applied to the
signal before analysis, and frequency range 6,4 kHz selected, there will be no
influence on the measurement results for a sampling frequency of 65536 Hz (the
normal sampling frequency corresponding to 25,6 kHz frequency range, as
shown in Fig.6.9(a). The characteristics of the external analog filter, and the
internal digital filter will in fact very nearly coincide. As shaft speed (and thus
sampling frequency f;) decrease, the aliasing components (folded around the
Nyquist frequency) move downwards towards the displayed part of the spec-
trum. Note, however, that while the analog filter characteristic remains constant
(in this case at 6,4 kHz) the digital lowpass filter characteristic varies in propor-
tion to the sampling frequency. Fig.6.9(b) shows the situation at 1/4 of the
original shaft speed. The analog filter characteristics are now overlapping as
they would for a normal 6,4 kHz baseband analysis, but are still well removed
from the display range (which has shrunk to 1,6 kHz). As illustrated in Fig.6.9(c),

1 Note that the built-in 6,4 kHz filters in the analyzers Types 2032/2034 are not of anti-aliasing
quality, but that special filters can be fitted as a modification.
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Fig. 6.9. Use of a fixed lowpass (LP) filter to prevent aliasing when tracking with
an FFT analyzer employing zoom to analyze in a lower frequency band.
For illustration purposes, the sampling frequency at maximum shaft
speed has been made 4 times greater than that appropriate to the
analog LP filter. The shaft speed range could be made proportionally
greater by increasing this factor
(a) Situation at maximum shaft speed. All harmonics of interest must
be contained in the display range
(b) Situation at 1/4 maximum shaft speed. The analog filter character-
istics overlap, but are well separated from the display range
(c) Situation at 3/16 maximum shaft speed. The aliasing range almost
intrudes on the display range

the sampling frequency can be reduced to less than 3/16 of the original before
there is any danger of aliasing components affecting the display range. The
alias-free speed range is in fact given by the formula:

fsmax _ (2,56 D-1) (6.2)
fsmin K
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where D is the decimation factor (4 in Fig.6.9) and K is the ratio of the frequency
where the filter attenuation is adequate (typ. 75-80 dB) to its cutoff frequency
(K = 1,56 in the example of Fig.6.9), giving a speed range of 5,9 in this case.

This leads to a slightly less simple method, which would allow alias-free
tracking over any speed range. The fixed 6,4 kHz analog lowpass filter of
Fig.6.9 could be replaced by a tracking lowpass filter with cutoff initially at
12,8 kHz (at maximum shaft speed). The filter steepness would only have to be
of the order of 48 dB/octave to avoid aliasing, and this would be maintained
over the entire speed range as the tracking filter characterics would also vary in
proportion to shaft speed. The selected display range could be anything less
than the maximum by a factor of 2 or more (i.e. 12,8 kHz or lower).

Note that both these techniques have assumed that it is possible to select a
multiplying factor such that the maximum sampling rate (at maximum shaft
speed) corresponds to 65536 Hz. In practice there can be advantages in limiting
the multiplying factors to powers of 2, to ensure both that the multiplying factor
is an integer and that there will be an integer number of periods along the
record length (the number of samples, N, is a power of 2 and therefore only
divisible by powers of 2, see Eqn.(6.1)). Thus, in this situation the maximum
frequency corresponding to maximum shaft speed can only be determined to lie
between 65536 Hz and one-half this value; the other parameters must be modi-
fied accordingly.

Note that in the situation described here, Equation (6.1) should be modified as
follows to take account of the fact that the initial sampling rate of the analyzer is
higher than the final sampling rate in the Fourier transformed record. Thus:

_D-N
m

E (6.3)

. . . 25,6 kH .
where D is the decimation factor —z, and f,,, is the selected frequency

max
band on the analyzer. D is normally a power of 2 (in any case for the Analyzers

Types 2032/2034).

From Eqgn.(6.3) it can be seen that for Line No. values n, other than powers of
2, a non-integer (though rational) multiplying factor must be used, requiring a
multiplier/divider. The advantage of having an integer value for n; is that there
will be an integer number of periods of all harmonics in the record length, and
thus rectangular weighting can be used. This will concentrate these harmonics
in a single line, but it should be kept in mind that other discrete components
(e.g. from geared shafts or constant frequencies) in general will fall between
analysis lines and therefore have poor filter characteristics (cf. Fig.4.12). Thus,
it can be an advantage to use another window, such as Hanning, in any case.
Note that it is possible to choose a multiplying factor such that n; is non-
integer, in which case even the harmonic orders will fall between analysis lines.
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The best solution to this problem would be to use “flat-top” weighting which
would ensure that all discrete frequency components, including shaft harmon-
ics, would be represented by a peak of the correct height, and it would not be
necessary to make “picket fence” corrections.

For analyzers with non-destructive zoom, such as the B&K Types 2033 and
2515, a procedure similar to that illustrated in Fig.6.9 can be employed, where
zoom is used to select a frequency range lower than that determined by the
input sample rate (the baseband frequency range). In this case, an internal
analog lowpass filter corresponding to the zoom band can be chosen.

It should be noted that with non-destructive zoom, the entire memory normal-
ly has to be replenished for each zoom analysis, and thus overlapping analyses
are not possible. This would often limit the rate at which the original signal can
change in order for the results (as a waterfall diagram) to be easily interpret-
able. Ref.6.3 gives further details of this technique.
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Fig. 6.10. Order analysis obtained during the rundown of a large turbo-genera-
tor, using zoom tracking on the 2033 Analyzer
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Figure 6.10 (from Ref. 6.3) shows the application of this technique to a run-
down of a large turbo-generator. With factor D corresponding to the zoom
factor 10, n, = 40, and N = 1024 (Analyzer Type 2033), the multiplying factor
used was 256. It is seen that the various harmonics remain in the same analysis
line for the whole of the measurement (shaft speed range from 50 Hz down tc
6 Hz), but that the amplitude of the components varies considerably with shaft
speed as the latter runs through a number of “critical speeds”. The curved line
in the diagram traces the (hyperbolic) path of a constant (150 Hz) component,
initially coinciding with the third harmonic of shaft speed. The fact that constant
frequency lines follow a curved path means that the order tracking technique is
slightly less suitable for separating them from shaft orders than the “waterfall”
technique of Figure 6.5.
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7. DUAL CHANNEL ANALYSIS

Simultaneous analysis of signals in at least two channels opens up new
application areas, where it is no longer the signals themselves which are of
primary interest, but rather the properties of the physical system responsible
for the differences between them. The techniques can be extended to virtually
any number of channels, but as they are basically analyzed two at a time, the
topic is here referred to as dual channel analysis. The B & K Analyzer Type 2032
is an excellent example of a dual channel analyzer. Naturally, as is evident from
the material of earlier chapters, a dual channel analyzer can be, and often is,
used for single channel signal analysis.

Dual Channel Spectrum Averaging
Average
Z F-1
ch.A. »| Instant Instant —-—_c Auto- > Auto-
(Input) Time ::) Spectrum '“‘ P! _T
a(t) Al Gaalf) Raa(7)
— Tl —
Frequency N 1 Impulse
Function
Average i) hir)
Z !
ﬁ Cross > Cross
=] * ©
Gaelf) Ran(7)
Coherent
Coherence :j Output
Power
¥ Y1) - Gaalf)
Average
F-1
ch.8 »| Instant S Instant ‘\:> Auto- Jj Auto-
(Input) Time Spectrum spectrum
b(t) B(h) Gaalf) Rue(7)
L Recording 1l Analysis I Averaging |1 Post Processing |
830354/2

Fig. 7.1. Typical block diagram of a dual channel FFT analyzer in spectrum
averaging mode
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Figure 7.1 shows the basic internal structure of a typical dual channel analyz-
er, such as the 2032, in terms of the functions which are calculated (not all
functions are shown). At the top and bottom of the diagram are what could be
two parallel single channel analyzers, for Channels A and B, respectively. For
each signal, the time function is first transformed (by a forward FFT) to a
complex (instantaneous) spectrum. The squared amplitudes of a number of
such instantaneous spectra are next averaged in an averaging buffer to give
the “autospectrum” (alternatively known as power spectrum) for that particular
signal. The autospectra can be further processed to give the “autocorrelation
function” (see later) or the “power cepstrum” (see Chapter 8).

The basic new function, shown in the centre of the diagram, is the “cross
spectrum”, calculated from the instantaneous spectra of both channels. All
other functions in the diagram are calculated (by post processing) on the basis
of the two autospectra and the cross spectrum. In the following sections, the
definitions, calculation procedures, properties, and major applications of the
various functions are described.

7.1. CROSS SPECTRUM
7.1.1. Definitions and Calculation Procedures

In terms of the (complex) instantaneous spectra A(f) and B(f), respectively,
the cross spectrum S,z (“from A to B”) is defined by the formula:

Sas(f) = A*(f) - B(f) (7.1)

Thus its amplitude is the product of the two amplitudes, and phase the
difference of the two phases (from A to B). The cross spectrum Sg, (“from B to
A”) would thus have the same amplitude, but opposite phase. As for autospec-
tra (see Fig.2.5) the cross spectrum may be expressed in a one- or two-sided
form, and the commonly used one-sided form is often termed G,z(f), where
G,s(f) is defined by:

GAB(f) = 0, f< 0
Gap(f) = Spplf), f=0 (7.2)
Gas(f) = 2 Spp(f), f>0

Similar relationships hold for the autospectra.

The real part of G,5(f) is known as the “coincident (or co-) spectrum”, while
the imaginary part is termed the “quadrature (or quad-) spectrum”.
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Strictly speaking, Eqn. (7.1) gives only a single estimate of the cross spec-
trum (such as would apply to a pair of transients). Where the two signals are
stationary random, or a series of transients with some added noise, a better
estimate of the cross spectrum can be obtained by averaging over a number of
records (as for autospectra, see Fig.4.20). In general, when dealing with signals
containing noise, the result can have both a systematic, or bias error, and a
random error. The meanings of these two terms are illustrated in Fig.7.2 (from

Bias error

¥ True value

821364

Fig. 7.2. lllustration of bias error and random error

Ref.7.1). Ref.7.1 discusses this question in some detail, making use of formulae
developed by Bendat & Piersol (Refs.7.2, 2.2). For stationary, gaussian random
signals, the random error in the cross spectrum is given by the formula:

1

1Gas(n]] =
& [ Gas(f)] ] m 7.3)

where ¢ [ | Gag (f)| ] is the normalised error in the magnitude of the cross
spectrum, and v2(f) is the Coherence function (see later). n, is the equivalent
number of independent averages. Except for the addition of the coherence
function, this is the same as the error in the mean square value of autospectral
estimates (Eqn.(B.10) in Appendix B). The «%f) term allows for the fact that
there will also be some random variation of the phase angle, when the two
signals are not fully coherent (autospectral estimates are scalars, and therefore
have no phase variation).

For linear systems, there is generally no bias error in the cross spectral
estimates, provided the analysis is made with sufficient resolution (see the later
discussion in connection with Fig.7.15).
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7.1.2. Applications

The cross spectrum is not very widely used in its own right, it is mainly used
as a basis for calculating other functions, but in general it can be said that the
amplitude IGABI gives a measure of how well the two functions correlate as a
function of frequency, and the phase angle / G,z a measure of the phase shift
between the two signals as a function of frequency. Since a time delay corre-
sponds to a certain slope in a phase spectrum, the slope of the phase of the
cross spectrum is sometimes used as a measure of time delay, in particular
when this varies somewhat with frequency, such as in the case of dispersive
systems (Ref.7.2). In cases where the signals in channels A and B represent an
input and output, respectively, to a physical system, the frequency response
function (see later) would generally be preferred to describe the relationship
between the two signals in the frequency domain. The cross spectrum is a more
symmetrical function which can be applied when there is no known cause/effect
relationship between the two signals (e.g. response measurements at two
points on a structure).

An important application area for the cross spectrum is its use in estimating
sound intensity in the situation where a(t) and b(t) are sound pressure signals
from closely spaced microphones (Ref.7.3). It can be shown that a finite differ-
ence approximation of the sound intensity is given by the (frequency weighted)
value of the imaginary part of the cross spectrum. Ref.7.1 discusses this
application in more detail and lists a number of other references.

7.2. COHERENCE
7.2.1. Definition and Properties

As implied in the previous section, the coherence gives a measure of the
degree of linear dependence between the two signals, as a function of frequen-
cy. It is calculated from the two autospectra and the cross spectrum by the
formula:

| Gas(f) |2

2 R e —————
Y = G- Gt 74

As explained in Ref.7.1, the coherence (at each frequency) can be interpreted
as a (squared) correlation coefficient (which expresses the degree of linear
relationship between two variables) where the autospectral estimates corre-
spond to the variances of the two variables, and the cross spectral estimate to
the covariance. Fig.7.3 shows how the squared correlation coefficient p2,
varies for different relationships between the variables x and y, and an equiva-
lent relationship holds for the coherence function. In Fig.7.3(a) there is a per-
fectly linear relationship between x and y and p2, = 1. In (b) and (c), p3, < 1
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Fig. 7.3. Dependence of the correlation coefficient p,, on the linearity of the
relationship between 2 variables x and y

but for different reasons. In (b) the relationship is reasonably linear, but there is
some random spread due to added noise. In (c) there is no random spread, but
the relationship is non-linear. In (d) there is no relationship whatso-
ever, and p?, = 0.

For a single estimate, Eqn. (7.1) indicates that:

LA(H) |2 | B(A|?
Saa - Ses (7.5)

| Sas(f) |2

and therefore the coherence would always be unity. However, Fig.7.4 shows
that when the calculation of y%(f) is based on averaged functions, where the
individual estimates of G,z are influenced by noise, the variation in phase angle
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leads to the result that the modulus | G,z | would generally be less than that
where no noise is present, the latter case corresponding to the situation where
2 = 1 (with all estimates adding up in phase). In Ref.7.1 it is shown that non-lin-
earities give a similar result.
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Fig. 7.4. Effect of noise in reducing coherence

Figure 7.5 (from Rgf. 7.1) expresses the normalised error ¢, [§z(f)] in the
coherence estimate v?(f) as a function of the true coherence 2(f) and the
number of independent averages n,. This applies to the effects of random noise
in the two signals a(t) and b(t). The estimate is usually unbiased if the calcula-
tion is done with sufficient accuracy.

Reasons why the coherence ¥2(f) may be less than unity include:

1) The presence of uncorrelated noise in a(t) and/or b(t).
2) A non-linear relationship between a(t) and b(t).

3) Leakage due to insufficient resolution, and/or wrong choice of window
function.

This is a particular form of non-linearity introduced by the analysis. An
example is given in Fig.7.17.
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4) Time delay between the two signals, where this is of the same order as the
length of record. Fig.7.6 illustrates that even when signal b(t) results directly
from a(t), the apparent relationship will not be very strong if the delay 7
between b(t) and a(t) is large with respect to the record length T. In fact, for
white noise signals, Ref.7.2 shows that the estimated coherence will be
lower in the proportion (1 — 7/T)% This bias error can be removed by
applying what is known as “pre-computational delay” to the signal b(f) so
that the sections of signal analyzed correspond to each other (Fig.7.6).

Pre-computational delay may be applied in the analyzers Types 2032/2034,
with automatic adjustment of the time scales of such functions as cross
correlation and impulse response (see later).

Where the output signal b(t) contains reverberant components (i.e added
coherent signals with different delay times) then it is not possible to fully
compensate for them by a simple delay. The bias error will be small if the record
length is made as long as the reverberation time (Ref.7.2), for example by
zooming, but even where this is not done, the error can be minimised by using
pre-comp. delay corresponding to the “mean” delay time. This can best be
determined empirically by maximising the coherence.
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Fig. 7.6. lllustration of how system delays must be compensated for to avoid a
reduction in coherence

7.2.2. Applications

The main application of the coherence function is in checking the validity of
other functions, and in determining whether they are influenced by noise and/or
non-linearities. Some examples of this are given in later sections. A low coher-
ence does not necessarily mean that a measurement is invalid, but will some-
times indicate that a large number of averages are required to give a valid result
(e.g. Eqn.(7.3)).

The coherence is also used to generate a number of derived functions which
have various applications.

One of these is the so-called Coherent Output Power defined by:
COP = v2 - Ggg (f) (7.6)

Thus, it gives a measure of what part of a measured (output) autospectrum,
Ggg(f), is fully coherent with a particular (input) signal represented by a(t) and
with autospectrum Gp,(f).

Fig. 7.7. Example of the use of Coherent Output Power to remove the effects of
noise added to the output signal
(a) Measured output spectrum contaminated with added white noise
(b) Coherence obtained in the measurement of (a)
(c) Coherent output power
(d) Output spectrum with no added noise
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Figure 7.7 shows an example where the output autospectrum, obtained by
applying a white noise signal to an electrical circuit, is contaminated by the
addition of (white) noise from an uncorrelated source. Fig.7.7(a) shows the
spectrum as measured, (b) shows the coherence, (c) the coherent output power,
and for comparison purposes (d) shows the output auto-spectrum without the
contaminating noise. This is seen to be very similar to (c), except at the
resonance peak, where there is a lower coherence due to leakage. This empha-
sizes that coherent output power is only valid where the low coherence is
entirely due to noise contamination of the output signal.

Fig.7.8 is an example of another application, the use of coherent output
power to extract the harmonics of a particular shaft speed from a signal also
containing noise and non-harmonically related frequency components. The
signal used as input was a tachometer signal, consisting of a series of once-
per-rev pulses, which had strong harmonics throughout the frequency range of
interest. The result is in some ways similar to that achieved by synchronous
averaging, but does not give the phase relationships of the various harmonics.

Ref.7.4 describes the application (and limitations) of the coherent output
power technique to the separation of the contributions of a variety of inputs to a
given measured spectrum, e.g. the sound measured at a particular point. It is
pointed out that if the signals used to characterize the various inputs are in any
way correlated (i.e. coherent), then much more complex “multiple coherence”
and “partial coherence” techniques must be used. The latter are based on
measurements of the coherence between all known inputs and outputs, and are
fully described in Ref.7.2.

Another more direct application of the coherence function is to calculate the
Signal-to-Noise Ratio defined as:

2

¥

7.7)
1=y

S/N =

2

Where noise in the measured output is assumed to be the only factor influenc-
ing coherence, then the coherent output power (proportional to v?) gives a
measure of the “signal” appearing in the output, while the non-coherent power
(proportional to 1-v?) gives a measure of the “noise” in the output. Figure 7.9
gives the S/N ratio for the case of Fig.7.7, and shows that where the S/N ratio is
less than 1 (0 dB), the noise contaminated auto-spectrum departs significantly
from the uncontaminated spectrum (cf.Fig.7.7(d)).
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Fig. 7.8. Example of the use of Coherent Output Power to extract the harmon-
ics of a particular fundamental frequency (defined by a tachometer
signal)

(a) Autospectrum as measured

(b) Coherence between the vibration signal and the tacho signal

(c) The coherent part of the autospectrum, viz. the harmonics in the
original signal corresponding to the harmonics of the tacho signal
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7.3. FREQUENCY RESPONSE FUNCTIONS

Probably the most important use of dual channel analysis is in the measure-
ment of Frequency Response Functions. These represent the ratio of output-
to-input in the frequency domain, and thus fully characterize stable linear, time-
invariant physical systems (e.g. structural, electrical, or acoustical systems).
Frequency response functions are sometimes known as “transfer functions”,
but strictly speaking this term applies to the complete description in the
Laplace domain, of which the frequency response functions represent a special
case (the values along the imaginary axis of the Laplace plane, Ref.7.5 and
Appendix C).

a(t) hit) b(t) = a(t) * h(t)
— —>»

A(f) H(f) B(f) = A(f) - H(f)

860770

Fig. 7.10. Input — Output relations for a linear system

7.3.1. Definitions and Calculation Procedures

To assist in understanding the meaning of the frequency response function
H(f), Fig.7.10 shows the relationships between the input signal a(t) and output
signal b(t) for a stable, linear, time-invariant system (henceforth termed an
“ideal” system) in the absence of noise. The system is characterized by its
impulse response, h(t), and as described in connection with Eqn.(2.28), the
output signal b(t) is the convolution of a(t) with h(t), thus:

b(t) = a(t) * h(t) (7.8)
By the convolution theorem, it follows that
B(f) = A(f) - H(f) (7.9)

where H(f) is the Fourier transform of h(t). Thus, in this situation, H(f), the
frequency response function, can be obtained from:

B(f)

H(f) = Al

(7.10)
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In practice, there are found to be advantages in modifying Eqn.(7.10) in
various ways. For example, if it is multiplied top and bottom by the complex
conjugate of A(f) a version known as H, is obtained:

B(f) ~_A*(f)
A(f) A*(f)

i.e. H, (f)

Sasl) _ _Guslf) 741

Saalf) Gaa(f)

in other words, the cross spectrum normalised by the input autospectrum. In
Ref.7.2 it is shown that in the presence of noise in the output signal, this
definition minimises the error in the resulit.

If instead, the complex conjugate of B(f) is used, another version known as
H, is obtained (Ref.7.6):

) _ B(f) B*(f)
_ _Ses(f) _ _Gss(f) (7.12)

Sgal(f) Gga(f)

which involves the cross spectrum (from B to A) and the output auto-spectrum.
It will be found that this version has advantages in other situations.

It is of interest to note that the ratio of H, and H, (always) equals the
coherence, as follows:
Hi(f) _ _Gas(f)  Ggalf)
H, (f) Gaalf)  Ggsl(f)

Ga(f) - Gag*(f)
Gaa(f) - Ggg(f)

| Gas(f) I?
Gaa(f) - Ggg(f)

~2(f) Q.E.D. (7.13)

It is perhaps worth emphasizing that although H, and H, in general have
different properties, they “share” the same value of coherence. They also have
the same phase spectrum, because

£(1/Gpa(f)) = LGga(f) = £Gag(f) (7.14)
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and because the autospectra G,, and Ggg are scalar quantities, the phase
spectrum of H(f) is the same as that of the cross spectrum, G,g(f), from
Eqn.(7.11).

7.3.2. Effects of Noise on Hy and H2

Fig.7.11 illustrates the situation where the measured signal b(t) includes not
only signal v(t), the output signal from the system in response to a(t), but also
some additive uncorrelated noise n(t). n(t) might also include some compo-
nents actually transmitted by the system, but stemming from sources other than
a(t). As discussed in connection with Eqn.(7.3), Gag(f) gives an unbiassed
estimate of the true cross spectrum (across the system) G, (f), and tends to it
in the limit if sufficient averaging is performed. The output auto-spectrum
Ggg(f) = Gyy(f) + Guan(f) (for uncorrelated signals the mean squares add
directly) and so we have:

Gaslf) _ _Gulf)

H,(f) = = H(f 7.15
D= G " Gaalh * (7.19)
while,
Hy(r) = _Geal)_ _ Gudf) + Gun(f)
2 Gpal(f) Gua(f)
= H(f) + G (1)
(f) - Gaalf)
_ Gl f)
- 1 THN 12 - GMm]
_ Gun(f)
= H(f)[ 1+ ———va(f)] (7.16)
at) ————— ::g ' v(t)

n(t) b(t)

840152/1

Fig. 7.11. Ideal system with extraneous noise in measured output signal b(t)
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Note that G, (f) corresponds to the Coherent Output Power, and that the ratio
G (f)

is the reciprocal of the Signal-to-Noise ratio.
Gyy(f)

utt) h(t) )
HIf)

m(t) a(t)

840063/1

Fig. 7.12. Ideal system with extraneous noise in measured input signal a(t)

Figure 7.12 illustrates the opposite situation where the measured input signal
a(t) is contaminated by noise, m(t), which does not contribute to the system
response b(t). By following a similar derivation to the previous case (Ref.7.1) it
can be shown that in this case :

H,(f) = H(f) ! (7.17)

[

while, Hy(f) = H(f) (7.18)

Similarly, for noise at both input and output, H,(f) is given by Eqn.(7.17) and
H,(f) by Eqn.(7.16). In the absence of bias errors due to non-linearities (includ-
ing leakage) H,(f) and H,(f) give a lower and upper bound, respectively, to the
true value.

It should be noted that when the measured input signal is contaminated by
noise, the concepts of Coherent Output Power, and Signal-to-Noise ratio, as
defined in Equations (7.6) and (7.7) are no longer meaningful; (it can readily be
shown that these definitions correspond to Equations (7.15) and (7.16)).

Fig. 7.13. Comparison of frequency response estimates H, and H, for the case
of Fig.7.7 (noise added at output)
(a) Coherence function with cursor placed in the vicinity of y? = 0,1
(b) Estimate H, which is good for v2 > 0,1
(c) Estimate H, which is poor except at resonance peak
(d) Estimate with no noise for comparison
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Normally, when making measurements of frequency response, one has full
control over the input signal, which is thus less likely to be influenced by noise,
whereas the output signal is modified by the system response, and for example
at antiresonances is likely to be contaminated by noise. Thus, in these situa-
tions H, usually gives the best estimate over the whole frequency range, at least
with respect to the effects of noise. Fig.7.13 illustrates this for the same case as
Figs.7.7 and 7.9. After performing 1000 averages, the H; version is very close to
the actual value of H, even in the vicinity of the anti-resonance, with the
coherence as low as 0,1. H, is a poor estimate except in the vicinity of the
resonance peak.

F|gure 7.14 (From Ref.7.1) gives the values of normalised (random) error
€ [I H(f) | ] in the magnitude of either H, or H, as a function of the coherence
~2(f) and the number of independent averages n, Note that this is different
from the bias errors (where applicable) expressed in Equations (7.16) and (7.17).

For ny = 1000, and y2(f) = 0,1 (corresponding to the cursor position in
Fig.7.13) the random error from Fig.7.14 is found to be 0,07 (0,6 dB), which
corresponds well with the actual results for local random fluctuation.

There is at least one situation, however, where the measured input signal is
likely to be contaminated by noise, and this occurs when lightly damped
structures are excited with random noise by a shaker. At resonance peaks, the
structure acts like a short circuit, and the input force spectrum is likely to be low
(even when the generator signal feeding the power amplifier is white noise). The
input signal can thus be contaminated by noise in the vicinity of resonance
peaks, whereas the output signal is strong and usually free of noise. In these
situations H, would generally be better than H,. Ref. 7.6 points out that the best
solution is often a composite function where the peaks are taken from H, and
the balance from H,.
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Fig. 7.14. Normalized random error e, [Lﬁ(f)l 1 of magnitude of Frequency
Response Function estimates (H, (f) or H,(f)) as a function of number
of averages ny for different values of Coherence v?(f)

7.3.3. Effects of Leakage on Hy and H2

So far, only the effects of noise have been considered. With respect to the
effects of leakage, H, is almost always better than H,. Leakage problems tend
to occur whenever the system is excited by a stationary random input signal,
and where the resolution of the analysis (determined by a window function such
as Hanning) is not sufficiently fine with respect to the resonance peaks being
measured. Fig.7.15 illustrates this for the case of a flat input spectrum Ga,(f)-
There is no leakage error in Gu,(f), but the peaks in Ggg(f) and | Gag(f) |
are spread out as indicated by the dotted lines. In Ref.7.7, it is shown that in the
calculation of H, the errors in Ggg and | Gag| tend to cancel out and give the
correct result, whereas in the calculation of H;, the error is in | Gag| only and
therefore has a greater effect on the result. Ref.7.7 shows that this applies even
where the input spectrum G,, is not flat. Even though H, gives the correct peak
value if it coincides with an analysis line, there can be a “picket fence” effect if
the actual resonance falls between two lines, and Fig.7.16 (from Ref.7.7) com-
pares the worst case errors for H; and H, against analysis resolution. It is found
that in general a result with a given (maximum) error can be obtained from H,
with about 3 times coarser resolution than for the same error in H,.
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Fig. 7.15. Bias errors in Ggg(f) and | Gag(f)| due to leakage. Gaa (f) is assumed

flat
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Fig. 7.16. (from Ref.7.7) Maxima of computed frequency response funActions H;
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and H, (worst case value compared with the true value H) vs. the
resolution factor f, n/Af for use of Hanning window

f, = frequency of resonance peak

n = hysteretic loss factor defining width of resonant peak

Af = analysis resolution (line spacing)

Note that the coherence is shown in terms of y rather than +y?



840103

Fig. 7.17. Magnitude of Frequency Response Function estimate H,(f} and Co-
herence Function from a baseband measurement on a mechanical
system. Random noise excitation

Figure 7.17 (from Ref.7.1) is an example showing the measurement of H, for a
mechanical structure excited by a shaker with a random excitation. The coher-
ence is seen to be low at all resonances (due to leakage) and anti-resonances
(due to leakage and noise in the response signal). The resonant amplification of
the peak selected by the cursor is 31,1 dB. Fig.7.18 shows H, for the same
measurement (and thus having the same coherence), and for the same peak,
the indicated amplification is 39,0 dB. Fig.7.19 shows a further measurement of
H; obtained using zoom on the same peak, along with the coherence for this
measurement. Since the coherence is 1 in this case, there is no leakage error
and the value of H, (and H,) would both be correct at 42,2 dB. Thus the value of
H, in Fig.7.18 is only 3,2 dB in error, as compared with 11,1 dB error for H; in
Fig.7.17.
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840105

Fig. 7.18. Magnitude of Frequency Response Function estimate H,(f) for same
measurement as Fig.7.17

840104

Fig. 7.19. Magnitude of Frequency Response Function estimate H,(f) and Co-
herence Function from a zoom measurement (Frequency span of

200 Hz) on the same system as in Figs.7.17 & 7.18. Random noise
excitation
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Fig. 7.20. Advantage of H, in a Nyquist plot
(a) H, with poor resolution (16 Hz) showing distortion of Nyquist circle
(b) H, with poor resolution (16 Hz) showing that the points lie on a

circle

(c) H, with good resolution (1 Hz) confirming that the H, circle in (b) is
correct (though not the points on the circle)
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One result of the analysis of Ref.7.7 is that when the values of H, are plotted
in Nyquist format (real part vs imaginary part) they fall on the correct circle,
even though not necessarily at the correct points. Thus by curve fitting a circle
to the points, the correct value of resonant amplitude (residue) will be obtained
(see later) even though it may correspond to an incorrect estimate of damping.
Fig.7.20 shows examples of Nyquist plots of a resonance peak (of the system
analyzed in Fig.7.7) with poor resolution such that H, differs from H,. Also
shown is a correct result obtained using zoom. This has the same diameter as
the other result for H,.

7.3.4. Applications of Frequency Response Functions

The main reason why frequency response functions are very widely used, is
the simplicity with which the response of physical systems can be expressed in
terms of them. One aspect of this, as evidenced by Equations (7.8) and (7.9) is
that convolutions in the time domain reduce to multiplications in the frequency
domain. More generally, as shown very briefly in Appendix C (and in more detail
in Refs.7.5 and 7.8) for ideal physical systems whose properties can be de-
scribed by systems of linear second order differential equations, application of
the Laplace transform converts the differential equations to algebraic (polyno-
mial) equations in the Laplace variable s. The solutions of these equations can
be written in terms of “transfer functions”, H;(s), which express the ratio of the
response at point i to an input at point j. As shown in Appendix C, a typical
transfer function for a system with n degrees of freedom can be represented as:

Hy(s) = Z[ P +s—§—] (7.19)

where the p,, or “poles”, are global properties common to all the transfer
functions of the system, while the r;,, or “residues”, are specific to a particular
transfer function. Each of the terms summed in Eqn.(7.19) represents the
response of a single degree-of-freedom system with pole p, = - g, + jw,.

The real part of this , — o,, represents the damping of the k" mode, and the
imaginary part, w,, its damped natural frequency (in radians/s). It can be shown
that by substituting jw for sin Eqn.(7.19), (thus evaluating it along the imaginary
axis), and converting angular frequency w to circular frequency f in Hz, the
result is the equivalent frequency response function Hy(f), (see Appendix C).

As for the transfer function, the frequency response function can be interpret-
ed as the sum of a number of components each equivalent to the response of a
single degree of freedom system (Fig.7.21). In Modal Analysis applications, the
global properties o, and w, can in principle be extracted from any of the H;(f)
by curvefitting, whereas the residues r;, define the mode shape Vi It is not
however necessary to measure all the Hj;, as it can be shown that the residues
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Fig. 7.21. The frequency response function H; represented as the sum of com-
ponents corresponding to single degree-of-freedom systems

(and hence mode shapes) can be extracted from (aimost) any row or column of
the [H(f)] matrix. Thus, it is possible to excite in one degree-of-freedom (DOF)
only (for example with a shaker), and measure response (for example with an
accelerometer) in all DOF’s (each DOF corresponding to a point and direction).
Alternatively, it is possible to measure response in one DOF only, and excite
(for example with an instrumented hammer) at all DOF’s. The restriction is that
the particular row or column should not correspond to a node point in the mode
shape (which nullifies all elements for that mode).

The system response in the frequency domain can thus be expressed (in
terms of angular frequency w) as:

{X(w)} = [H(w)] {F(w)} (7.20)
where: {X(w)} is the response vector

{F(w)} is a vector representing the forcing functions
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and [H(w)] is the matrix of frequency response functions.

The elements of [H(w)] can be synthesized from:

n r.’.*

Hjj(w) = Z L I (7.21)

+
(ot jwr)  Jw - (-0 - jwy)

even for frequency response functions which have not been measured (provid-
ed all relevant modes are included).

One major application of these techniques is so-called “Forced Response
Simulation”, which is effectively the application of Eqn. (7.20) to a prescribed
set of forcing functions. Where the input forcing functions are uncorrelated
random signals described only in terms of their autospectra Gj(f), the auto-
spectrum of the response (at DOF j) can be obtained by summing the (mean
square) effects of the various inputs, thus:

Gji(f) = Z Gy(f) | H;|? (7.22)

Modal models obtained from measured frequency response functions can
also be used to verify and adjust analytical models, for example those based on
Finite Element analysis.

7.4. CORRELATION FUNCTIONS
7.4.1. Definitions and Calculation Procedures

The cross correlation function R,, (7) gives a measure of the extent to which
two signals correlate with each other as a function of the time displacement, 7,
between them. For transient signals, the cross correlation function is defined by
the formula:

Ras(r) = [~ a(t) b(t + 7) ot (7.29)

For stationary signals, the formula is slightly modified (to convert from
“energy” to “power”) as follows:

Ru(r) =  lim Lf%a(t) b(t + 7) dt (7.24)
T T J-Tp
It can be shown, as follows, that the cross correlation function can alterna-
tively be derived from the cross spectrum by inverse Fourier transformation,
and this is the procedure used to calculate it in Fig.7.1. Eqn.(7.23) can be
developed as follows:
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R (T) =j:: b(u) a(u-7) du, where u=t+ 7 and du = dt
=f°° b(u) c(r-u) du, where c(t) = a(~t)
-0

By comparison with the convolution Equation (2.28), this is seen to be the
equivalent of:

Rap(T) = b(T) * c(7)
= b(T) * a(-1) (7.25)
Applying the Fourier transform and the Convolution theorem, this becomes:
F {Rap(T)} = B(f) - A(-f)

(because when time runs backwards, phasors rotate backwards)

B(f) - A*(f)

Saslf) Q.E.D. (7.26)

Thus, the cross spectrum is the forward Fourier transform of the cross correla-
tion function.

The auto-correlation function is a special case where a(t) = b(t) and it is
thus defined by

Raal7) = [~ a(t) a(t + 7) o (r.27)
-0
for transients, and
R(r)= i 1f”2 t) a(t + 1) dt (7.28)
aa(T) - T|—>n20 T _1/5 a( ) ( .

for stationary signals.

The equivalent of Eqn. (7.26), viz.

A*(f) - A(f) (7.29)
Saalf)

7 { Raa(T) }

where S,,(f) is the autospectrum, is known as the “Wiener-Khinchin” relation-
ship, at least for stationary signals (which require a somewhat more elaborate
proof).
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The correlation functions were previously calculated directly in the time
domain, but since the advent of the FFT algorithm it has become much more
efficient to go via the frequency domain, as indicated in Fig.7.1, making use of
the relationships expressed in Equations (7.26) and (7.29). However, the circu-
larity of the DFT (Section 4.3) leads to some special effects which must be taken
into account when estimating the correlation functions by this means.
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Fig. 7.22. Circular correlation effect. The Correlation Function is assumed to be
even in the lower graph

Fig.7.22 illustrates the so-called “circular correlation” effect, which illustrates
how the records are interpreted as being periodic, and thus when Channel B is
displaced with respect to Channel A, it effectively overlaps the next period of
the signal segment in Channel A, giving an apparent result not corresponding to
the actual. Fig.7.23 illustrates how the use of so-called “zero padding”, whereby
the second half of each record is set to zero, eliminates the overlap and thus
gives a more correct result.

For transient signals, the circularity will be avoided if the frequency range is
so chosen that the record length T is greater than the combined length of the
two transients, and the result will be correct as measured. For stationary signals
(to which zero padding is applied), the artificially introduced zero signal means
that the total energy in the range where the two records overlap decreases in
(inverse) proportion to the displacement 7, and this must be compensated for in
order to obtain a correctly scaled result. The linearly decreasing function by
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Fig. 7.23. The use of zero padding to eliminate the circular correlation effect.
The bow-tie correction is shown in the lower graph

which the measured correlation function should be divided is known as a “Bow-
tie correction” (because of its appearance in a 2-sided version) as illustrated in
Fig.7.23. Note that zero padding doubles the bandwidth of the cross spectrum
(and any other frequency functions) even though the line spacing remains the
same.

When it is primarily the correlation functions which are of interest (as op-
posed to the frequency domain functions) it is usually advisable to use rectan-
gular weighting in the initial analyses, as otherwise the correlations of the
weighted time functions will be obtained.
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7.4.2. Properties and Applications of Correlation Functions
7.4.2.1. Autocorrelation Function

Since the autocorrelation function is the inverse Fourier transform of the
autospectrum (Eqn.7.29), the results are independent of the phase of the signal.
Fig.7.24 illustrates this for three cases:

(a) A sinusoidal signal
(b) Band-limited white noise
(c) Bandpass filtered white noise

Autospectra Autocorrelations

Raa(7)

() Gaalf) — | |a—1/f

Raal7)
Gaalf
(b) aalf)
N Ly
V )
O > ~1/B 1/8\/ T
-B/2 B2 p
Raal(7
Gaalf) aal7)

860774

Fig. 7.24. Autospectra and Autocorrelation functions for various signals
(a) Sinusoid, frequency f,
(b) Bandlimited white noise, cutoff frequency B/2
(c) Bandpass filtered white noise, bandwidth B, centred on frequency
fo
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The auto-spectrum for any sinusoid is the same as the spectrum of a cosine
(apart from the scaling in squared units) and thus the autocorrelation function is
always a cosine. Referring to Eqn.(7.28) it is seen that the value of autocorrela-
tion for zero displacement, R,,(0), is equal to the mean square value of the
signal a(t). The function is often normalised to a maximum value of unity by
dividing through by the mean square value, in which case it is strictly known as
the “Autocorrelation Coefficient Function”.

(a)

(b)

a ) 840118/1

Fig. 7.25. (a) Time signal, and (b) Autocorrelation function for broadband ran-
dom noise

The auto-correlation function for band-limited white noise, with (ideal) low-
pass filter cutoff frequency B/2, is the well-known sin x/x function with zeroes at
multiples of /8. Thus for relatively broadband random signals, it is located close
to the origin and dies away very rapidly. Fig.7.25 gives an example from Ref.7.1.

The auto-spectrum for Fig.7.24(c), band-pass filtered white noise, can be
considered as the convolution of the spectra of cases (a) and (b). Thus, the
auto-correlation function is given by the product of the autocorrelation func-
tions (a) and (b). Consequently it is an amplitude modulated cosine, with
envelope given by a sinx/x function.
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The two main applications of the auto-correlation function are:
(1) Detection of a periodic signal buried in noise.

Fig.7.26 shows an example (from Ref.7.1) of a sine-wave buried in broad-
band random noise. It should be noted, however, that in order for the periodic
structure to be apparent, the record length has to be so long (and thus band-
width so narrow) that the discrete sinusoidal components would be readily
observable above the noise level in the auto-spectrum as well. The use of the
spectrum has the additional advantage that it can be used where more than one
periodicity is present at the same time. This would give a “quasi-periodic”
signal in the auto-correlation function, not easily recognizable by eye, whereas
the use of a harmonic cursor in the auto-spectrum would allow rapid identifica-
tion of the different sets of harmonics.

()

840120,

Fig. 7.26. (a) Time signal, and (b) Autocorrelation function for a sinusoid buried
in broadband random noise
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(2) Detection of echoes in a signal

When a(t) contains echoes i.e. scaled down replicas of the main signal with
different time delays, it can be seen from Eqn.(7.27) that when 7 equals one of
the echo delay times, the signal will correlate well with the delayed version of
itself, and the auto-correlation will have a peak. The peak would however at
best be a scaled down version of the autocorrelation function of the main
signal, and would thus only be a narrow well-defined peak for broadband
signals. It will be seen in Chapter 8 that the cepstrum in general has a much
better defined peak corresponding to echoes, and is thus generally a better
function to use to detect them.

7.4.2.2. Cross Correlation Function

Where signal b(t) is simply a delayed version of a(t), it will be appreciated
that when 7 equals the delay time 7, the two signals will be identical. Thus the
cross-correlation will simply be the autocorrelation of a(t) displaced by 1,. For
a relatively broadband signal with a localised autocorrelation function, the
location of the peak will indicate the delay time 7,. However, Figures 7.24(b) and
(c) show that where bandwidth B is narrow, the peak in the correlation function
is so spread out that it is difficult to locate it exactly. Some benefit can be
gained from taking the envelope of the analytic signal (Section 2.6), in order to
avoid confusion from the local oscillations, but the width of the peak of the
envelope function still limits the accuracy of determination of delay times.

Even where b(t) is attenuated and/or contains additive noise, a local peak in
the cross correlation function will indicate delay time and the degree of correla-
tion between a(t) and b(t).

Thus, the major applications of the cross correlation function are to detect
time delays between two signals, and to extract a common signal from noise.

(1) Determination of Time Delays

This is best illustrated by examples, which in this case are taken from Ref.7.1.
Fig.7.27 gives an example where a(t) is a sound signal measured close to a
sound source, and b(t) another at about 1,1 m distance from the source. The
autospectrum G,, (Fig.7.27(a)) shows the source signal to be very broadband,
and thus in the cross correlation function R,,(7) (Fig.7.27(b)) the peaks are well-
defined. The first and largest of these, selected by the cursor, is at 3,295 ms and
thus corresponds to the direct path of 1,1 m. The other peaks with longer delay
times represent reflected paths with more attenuation. Even in this fairly clear
situation, the envelope (magnitude) of the analytic signal (Fig.7.27(c)) gives
some improvement in detectability of the peaks.
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Fig. 7.27. Cross correlation with a broadband source
(a) Autospectrum of input signal, Gy, (f)
(b) Real part of the cross correlation fgnction, Ry (7)
(c) Amplitude of the analytic signal, | R,,(7)|
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Fig. 7.28. Cross correlation with a band-limited source
(a) Autospectrum of input signal, Ga, (f)
(b) Real part of the cross correlation fgnction, R.p(T)
(c) Amplitude of the analytic signal, | R, (7))
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With a constant wave speed, such as with sound signals, the delay times
directly represent path length (and in the 2032/2034 analyzers the “FLEX”
cursor can be calibrated in units of path length); thus, the cross correlation
function can be used to determine the relative importance of the various paths
by which a signal reaches a particular measurement point. However, as already
mentioned, the results are very much influenced by the bandwidth of the signal.
Fig.7.28 shows the results of a similar measurement to Fig.7.27, but where the
source spectrum is band-limited (Fig.7.28(a)). It is now very difficult to deter-
mine the peaks corresponding to the various delay times in the real part of
R.,(7) (Fig.7.28(b)) although the envelope of the analytic signal (Fig.7.28(c))
does improve the capability somewhat.

Even so, the information required here, the delays in the system response, is
independent of the applied signal, and can better be determined using a
measure of the system response itself, as will be seen in Section 7.5.

Another problem occurs in practice when the wave speed is not constant, for
example in the case of bending waves in structures (and other dispersive
systems). Here the wave velocity varies with frequency, as do delay times. One
possible solution, already mentioned in Section 7.1.2, is to use the slope of the
phase of the cross spectrum to indicate time delay. Another is to band-limit the
cross-spectrum before inverse transformation, to limit the amount of disper-
sion. However, as we have seen in Fig.7.28, such band limitation gives problems
in itself. The band limitation could be achieved by windowing in the cross
spectrum, or possibly by using digital zoom (note that this will often be deter-
mined by the required time scale). Where real-time zoom is employed, even on
a fairly broadband basis, it is virtually essential to use the magnitude of the
analytic signal, as the real part is distorted by the zoom process. Fig.7.29 shows
a result differing from Fig.7.27 only in that the 12,8 kHz band has been shifted
upwards by 512 Hz by zooming. In this case the delay of the direct path
(3,295ms) is only correctly indicated in the magnitude of the analytic signal
(Fig.7.29(b)).

(2) Extraction of a Common Signal from Noise

In the discussion of Section 7.1.1, it was pointed out that even in the presence
of noise in the input and/or output signal, the correct cross spectrum can be
measured if sufficient averages are made (Eqn.(7.3)). Correspondingly, the
correct cross correlation function will be obtained from this cross spectrum.
Hence, if the two signals a(t) and b(t) contain a common component, the cross
correlation function will in principle show this independently of contaminating
noise. If the common component were the signal c(t) (with no attenuation or
delay) the result would be the autocorrelation function of c(t).
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840125/1

Fig. 7.29. Cross correlation using zoom. Same results as for Fig.7.27, but using
zoom in the frequency range 512 — 13312 Hz
(a) Real part )
(b) Amplitude of the analytic signal

7.5. IMPULSE RESPONSE FUNCTIONS
7.5.1. Definitions and Calculation Procedures

As discussed in connection with Eqn.(2.28), the impulse response of a system
is its output signal when a unit impulse (delta function) is applied at the input. It
has also been pointed out that it is the inverse Fourier transform of the
frequency response function, and this is the procedure used to calculate it in an
FFT analyzer, thus:

h(ty = Z' {H(f)} (7.30)

Fig.7.30 illustrates this for a small mechanical structure. Fig.7.30(a) is a typical
response to a hammer blow, which in this frequency range was very close to a
true impulse (i.e. a flat spectrum). Fig.7.30(b) shows the calculated impulse
response obtained by inverse transforming the frequency response function,
itself generated by averaging over a number of hammer blows (where the force
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Fig. 7.30. Impulse response of a small structure
(a) Typical response signal to a hammer blow
(b) Impulse response from the frequency response averaged over 6
hammer blows
(c) Impulse response from a frequency response obtained using
pseudo-random excitation

applied by the hammer was measured by a force transducer). For comparison
purposes, Fig.7.30(c) shows that the same result can be obtained from a
frequency response function obtained in another way, in this case by applying a
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pseudo-random force signal via a shaker. It is seen that the results of (b) and (c)
are virtually identical, and very similar to (a) which, however, is unscaled.

7.5.2. Properties and Applications

In the same way that the frequency response function H(f) can be considered
as the sum of the response of a humber of single degree-of-freedom systems
(Eqn.(7.21)) the linearity of the Fourier transform means that the impulse re-
sponse is the sum of the individual single degree-of-freedom impulse respons-
es. As shown in Appendix C, the impulse response of a single degree-of-
freedom system has the general form of a “complex exponential” function, a
damped one-sided sine-wave. As shown in Fig.7.31, this has the formula
2| rle™?"sin (w,t) in terms of the frequency response parameters of
Eqns.(C.8) and (C.10). Summing over n modes (for an n degree-of-freedom
system) the expression for a more general impulse response function is:

n
hy(t) = > 2| ry| €% sin (wt) (7.31)
k=1

One of the applications in modal analysis is effectively the application of
Eqn.(7.31) to obtain the modal parameters of a multi degree-of-freedom system
by curve fitting. The method is known as the “complex exponential” method
(Ref.7.9). The impulse resonse function is obtained by inverse transforming a
windowed section of the frequency response function containing the modes to
be fit.

h(t} A

2 |r|-< eupt

860773

Fig. 7.31. Impulse response of a single degree-of-freedom system in terms of
the frequency response parameters r (residue) o, (damping factor)
and w,, (damped natural frequency)

265



The average decay rate of the impulse response can also be used to deter-
mine the average damping properties of a system. A typical parameter is the
so-called “reverberation time”, or time required for the response to decay by
60 dB. This is sometimes measured using the output of a short-term RMS
detector applied to the decaying signal (initiated by removing a broad-band
excitation, either random or impulsive). However, there is the danger that the
averaging time used will itself limit the rate of decay, and there can be advan-
tages in measuring directly the magnitude of the analytic signal corresponding
to the impulse response. This has the advantage compared with the real part
that it can be depicted on a logarithmic amplitude scale, and the mean decay
rate determined by a straight line. Fig.7.32 illustrates this for the impulse
response of a mechanical component.

lig i} 1 T T
Qm = 1000w 150m 20000

860980

Fig. 7.32. Determination of “Reverberation Time” from the impulse response.
The log magnitude of the impulse response is used

Fig. 7.33. Extraction of a single mode by windowing in the frequency response
function
(a) Total frequency response (magnitude)
(b) Resonance peak separated out by windowing
(c) Real part of the impulse response
(d) Magnitude of the corresponding analytic signal on a log scale. The
AX value gives the time constant T for an 8,7 dB decay

266



(b)

]
L
[l

84011271

@

84011471

267



For systems with well-separated modes, the individual resonances can be
separated from each other by windowing in the frequency domain, after which
an inverse transform gives the impulse response corresponding to that individ-
ual mode. Fig.7.33 shows an example from Ref.7.1, where in (a) the full frequen-
cy response is shown, in (b) the lowest resonance is windowed out using a
frequency weighting function with a flat portion over most of the peak and a
half-Hanning taper at either end. The impulse response from this mode alone is
shown in (c), and (d) shows the corresponding envelope of the analytic signal on
a logarithmic amplitude scale. This is a simple linear decay (cf. Fig.2.39), and
shows at the same time how the modal damping information can be extracted.
Considering the formula for the decay curve in Fig.7.31, e, this can be
expressed in terms of a “time constant” 7 as e, where 7 = 1/0. 7 is the time
required for the amplitude to fall by a factor e (1 neper, or 8,7 dB). In Fig.7.33(d)
the “REF” cursor is used to show that 7 (= AX) = 103,63 ms and thus ¢ = 1/7 =
9,65rad/s. In Ref.7.1, the results are also given for the other resonances, and
compared with results obtained directly in the frequency domain (from the half
power bandwidth).

o

|

|

SETUP M1 iR: 30% ' 01111

Fig. 7.34. Impulse response function of an acoustical system.
(a) Real Part
(b) Log magnitude of the corresponding analytic signal
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As mentioned in Section 7.4.2.2, for systems with multiple delay transmission
paths (and where there is a definite input and output signal) where one is
interested in determining the delay times for each of the paths, the impulse
response in general is better than the cross correlation function, as it is less
dependent on the spectral shape of the input signal. Fig.7.34 (from Ref.7.1)
shows a typical result both as the real part and log. amplitude of the analytic
signal. In particular in the latter case, the peaks corresponding to the various
delays are quite clear. By way of comparison, Fig.7.35 shows the corresponding
cross correlation function (and cross spectrum). Because of the band-limited
nature of the cross spectrum, the peaks in the cross correlation function are
much less clear than in Fig.7.34.

Fig. 7.35. Cross correlation for same case as Fig.7.34.
(a) Cross spectrum showing the band limitation
(b) Linear magnitude of the cross correlation function
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8. CEPSTRUM ANALYSIS

Cepstrum analysis is the name given to a range of techniques all involving
functions which can be considered as a “spectrum of a logarithmic spectrum”.
In fact, the cepstrum was first defined (Ref.8.1) as far back as 1963 as the
“power spectrum of the logarithmic power spectrum”. It was proposed at that
time as a better alternative to the autocorrelation function for the detection of
echoes in seismic signals. Presumably because it was a spectrum of a spec-
trum, the authors of Ref.8.1 coined the word cepstrum by paraphrasing spec-
trum and at the same time proposed a number of other terms derived in a
similar manner. A list of the most common (sometimes encountered in the
literature) is as follows:

Cepstrum from Spectrum

Quefrency from Frequency

Rahmonics from Harmonics

Lifter from Filter

Gamnitude from Magnitude

Saphe from Phase
and even such terms as “Short-pass lifter” from “Low-pass filter”. The first
three of these terms are useful, and are used extensively in this chapter; even
the word “lifter” is sometimes useful to indicate that filtration is carried out in
the cepstrum domain. The analyzers Types 2032/2034 display the “Liftered
Spectrum” obtained from applying a “Long-pass” or “Short-pass” lifter in the
cepstrum.

However, the distinctive feature of the cepstrum is not that it is a spectrum of

a spectrum, but rather the logarithmic conversion of the original spectrum.
Note that the auto-correlation function is the inverse Fourier transform of the

power spectrum (Eqn.7.29) and can thus also be considered a “spectrum of a
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= 1/206 Hz). The harmonics result from a fault in a bearing

Fig. 8.1. Effect of linear vs. logarithmic amplitude scale in power spectrum
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spectrum”. In fact the most commonly used definition of the cepstrum nowa-
days is as the “inverse Fourier transform of the logarithmic power spectrum”
which differs from the auto-correlation only by virtue of the logarithmic conver-
sion of the spectrum.

Figure 8.1 illustrates one of the situations where the cepstrum gives advan-
tages over the auto-correlation function. Fig.8.1(a) shows a particular power
spectrum on both linear and logarithmic amplitude scales (the linear scale of
course has units of “amplitude squared”). Fig.8.1(b) and (c) show the inverse
Fourier transforms, the auto-correlation function and cepstrum, respectively. In
the logarithmic version of Fig.8.1(a), a family of harmonics can be seen (which
derive from a fault in a ball bearing). The effect of this harmonic family is seen
clearly in the cepstrum (Fig.8.1(c)) as a series of rahmonics (denoted @, @, etc.)
but is not at all evident in the autocorrelation function. The latter is dominated
by the effects of the two largest peaks in the spectrum, which are all that show
up on the linear amplitude squared scale.

Cepstra derived from power spectra are now known as “power cepstra”.
Another type of cepstrum which was defined later is the so-called “complex
cepstrum” (Ref.8.2), derived from a complex spectrum, and thus using phase as
well as log amplitude information at each frequency. For this reason the
complex cepstrum operation is reversible back to a time signal; by contrast the
new definition of the power cepstrum is reversible back to a power spectrum,
while the old definition is not reversible at all.

Cepstrum analysis, in particular that involving editing in the complex cep-
strum, is one example of so-called “homomorphic” signal processing. For
further details of this wider topic, see Ref.8.2.

8.1. DEFINITIONS AND CALCULATION PROCEDURES
The original definition of the power cepstrum may be expressed as follows:
Caal7) = |~7{/Og SAA(f)} |2 (8.1)
in which the (2-sided) power spectrum, S,,(f), of a time signal a(t) is given by:
Saalf) = | 7 {a(t)} |? (8.2)
where the bar means averaging over a number of records (where applicable).

The new definition of the power cepstrum is:

Caalt) = ~7_1{/09 SAA(f)} (8.3)
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As will be seen, there can be advantages in using the corresponding analytic
signal (see Section 2.6.1) which can be obtained from the (one-sided) log power
spectrum T'4,4(f) as follows:

v
Caa(r) = F{Taal(f)} (8-4)
where FAA(f) =2 |Og SAA(f) ) f>0
T4a(f) = log Saa(f)  f=0
FAA(f) =0 7 f<oO

This is the definition used in the analyzers Types 2032/2034, and its magnitude
v
| Caa(7)] the version used in the analyzer Type 2515. Note that the real part of

5AA(T) is the same as C,,(7) defined in Eqn.(8.3).

In comparing the definitions (8.1) and (8.3) the question of whether a forward
or inverse transform is used is largely a formality. Because the power spectrum
Sia(f) is a real even function, the cepstrum is also a real even function (Table
2.1), and the forward and inverse transforms (Eqn.(2.14) and (2.15)) give the
same result (using the DFT there is a difference in scaling factor). The real
difference is the squaring of the results in Eqn.(8.1) thus making the process
irreversible and emphasizing the largest values. This is often not an advantage
because the largest values usually occur at low quefrencies, and are often less
important than peaks at higher quefrencies. The use of an inverse transform in
the definition makes the relationship of the cepstrum to the auto-correlation
function clearer, and is also more natural in going from a function of frequency
to a function of time (Eqn.(2.36)). Thus, the parameter 7 in the definitions is
actually time, although it is referred to as “quefrency”. As for the auto-correla-
tion function, the time parameter 7 can better be thought of as “delay time” or
“periodic time” rather than absolute time.

The complex cepstrum may be defined as follows:
Ca(r) = F'{log A(f)} (8.5)
where A(f) is the complex spectrum of a(t), i.e.:
A(f) = F{a(t)} = Ag(f) + jA(f)
in terms of its real and imaginary parts (Eqn.(2.40)) or,
A(f) = | A(f) | /D) (8.6)
in terms of its amplitude and phase at each frequency. Taking the (complex)

logarithm of Eqn.(8.6) gives:
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log A(f) = In |A(f)| + jo(f) (8.7)

and it is this complex function of frequency, with log amplitude as real part, and
phase as imaginary part, which is inverse transformed in Eqn.(8.5) to give the
complex cepstrum.

Note that when a(f) is real-valued, as is normally the case, then A(f) is
conjugate even (Eqn.(2.37)) from which the following relationships follow:

Ag(f) is even
A,(f) is odd
|A(f)] is even
In |A(F)| is even
¢ (f) is odd

from which it further follows that log A(f) is conjugate even and the complex
cepstrum C,(7) is a real-valued function, despite its name (Table 2.1).

8.2. PROPERTIES OF THE CEPSTRUM

As typified by the results of Fig.8.1, the cepstrum has the ability to detect
periodic structures in the logarithmic spectrum, for example families of har-
monics and/or sidebands with uniform spacing. Another effect which gives a
periodic structure to the logarithmic spectrum is the presence of echoes, which
can be understood as follows.

In Fig.8.2, a signal with an echo is modelled as the result of a convolution of
the original signal with a function comprising two delta functions, a unit impulse
at the origin, and an attenuated impulse at time 7 (corresponding to the echo
attenuation and delay time). By the convolution theorem, the spectrum of the
total signal in (c) must be the product of the spectrum of the original function in
(a) and the spectrum of (b). The latter can be derived intuitively by considering
the analogous case of a (complex) time signal corresponding to a spectrum of
the form of (b). As shown in (d) this would have a fixed (DC) component of unit
length, and an additive rotating phasor rotating at a rate proportional to 7 (and
thus with period 1/7 in the other domain). The resulting (complex) function has
an amplitude varying periodically around a mean of unity, and a phase varying
periodically around zero. Multiplying by this function would have the effect of
adding a periodic function to the log amplitude spectrum, and another periodic
function (with the same period) to the phase. Figure 8.3 illustrates this for the
case of a structural response when the structure is excited by hammer blows.
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Fig. 8.2. Modelling a signal with echo as a convolution

Where an echo is present (as a resuit of a “double hit”), the log amplitude and
phase spectra both have an additive periodic structure with a period in frequen-
cy of 18,8 Hz, the reciprocal of the echo delay time, 53 ms. The power cepstra
are shown in Fig.8.4, illustrating that the echo gives a peak at a quefrency
corresponding to the echo delay time (plus some minor rahmonics). As a matter
of interest, Fig.8.4 also shows the corresponding autocorrelation functions,
which (as mentioned in Section 7.4.2.1) are not as efficient in revealing the
echo.

Another property of the cepstrum, which gives rise to a large number of
applications, is its ability to separate source and transmission path effects, i.e.
to effect a “deconvolution”. This can be understood as follows.

Referring to Fig.7.10, the relationships between the input and output signals
of an ideal system can be expressed as:

b(t) = a(t) * h(t) (8.8)
or in the frequency domain

B(f) = A(f) . H(f) (8.9)
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in terms of the complex spectra, or
Spa(f) = Saalf) . |H(f)I? (8.10)
in terms of the power spectra.
Taking the logarithm of Eqn.(8.9) gives
log B(f) = log A(f) + log H(f) (8.11)

and because of the linearity of the (inverse) Fourier transform, the additive
relationship is maintained in the cepstrum, i.e..

F' {log B(f)} = 7" {log A(f)} + F' {log H(f)} (8.12)
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Fig. 8.3. Effect of echoes on the spectrum
(a) Impulsive force signal with a dominant echo (double hit) at 53 ms
(b) Resulting structural response signal. The echo is not immediately
obvious
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Exactly the same process can be applied to Eqn.(8.10), meaning that the
source and transmission path effects are also additive in the power cepstrum.
Note that by direct inverse transformation of Eqn.(8.10), the multiplication
would result in a convolution of the corresponding effects in the autocorrelation
functions (treating | H(f)|? as a power spectrum).

Applications of the cepstrum, based on these properties, range from simple
diagnostic applications (e.g. determination of an echo delay time) to those
involving editing in the cepstrum in order to remove an effect in another domain
(e.g. echo removal, deconvolution).

Fig. 8.3. (c) Log amplitude spectrum of force signal. The periodicity with
cont. 18,8 Hz spacing corresponds to the 53ms echo delay time
(d) Log amplitude spectrum of the response signal. This has the same
added periodicity
(e) Phase spectrum of the forcé signal. This has an added periodicity
corresponding to the echo delay time
(f) Phase spectrum of the response signal. This has the same added
periodicity
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Fig. 8.4. Cepstra and autocorrelations for the same signals as Fig.8.3.

(a) & (b) Cepstra for the force and response signals, respectively. The
echo delay time of 53ms is clearly evident in both
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Fig. 8.4. (c) & (d) Autocorrelation functions for the force and response signals,

cont.

respectively. The echo is only apparent in the force signal, which has a
flat spectrum
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8.3. APPLICATIONS OF THE POWER CEPSTRUM
8.3.1. Echo Detection and Removal

Figure 8.5 (from Ref.8.3) shows the results of an experiment to remove the
effects of an echo from the power spectrum, by editing in the power cepstrum.
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The spectrum of Fig.8.5(a) was obtained from a measurement with a reflecting
board 43cm behind a microphone receiving a broadband sound signal from a
loudspeaker in a normal room. The peaks in (b) at multiples of the correspond-
ing delay time 2,64 ms have been edited away in (c), and the spectrum of (d)
obtained by a further forward transform of the edited cepstrum. This is seen to
correspond very well with a direct measurement without the reflecting plane
(Fig.8.5(e)).

A very similar technique has been used in Refs. 8.4 and 8.5 to remove the
effects of ground reflections from measurements of aero engine noise on the
ground. A result of this kind was given in Ref.8.3, which also lists a number of
other references describing applications of the cepstrum in seismology and
underwater acoustics. Some of these describe the use of the complex cepstrum
for removing echoes from time signals, such as described here in Section 8.6.1.

8.3.2. Properties of a reflecting surface

In the analysis so far, the echoes and reflections have been considered to be
perfect copies of the original signal, only attenuated in amplitude. Where the
reflection is not perfect, the cepstrum can be used to determine the properties
of the reflecting surface. The following derivation is largely taken from Ref.8.6.

Receiver y(t)
Iy x(t)
Source
I2

7= (lp —lh)ec

h(r), H(f)

810737

Fig. 8.6. Signal with a non-ideal reflection

Consider the case depicted in Fig.8.6, where the signal y(t) received at a
microphone is the sum of the direct signal x(t), and a reflected signal modified
by the reflecting surface and attenuated because of the longer path. Thus, in the
time domain:

ﬂn=un+%mn*mpﬂ (8.13)
2

Transforming this equation by the Fourier transform gives

nn=mnh+iHmd“ﬂ (8.14)
b
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The power spectrum can be obtained as the square of the modulus:

lY(n12 = 1x(n1% [1 + ;—1 He2| [1 + ;i He2mfr ] (8.15)
2 2

from which the log power spectrum is:
/ )

log |Y|2 = log | X]|? + log [1+ I_1 He"z””]
2

+ log [1 + ;-‘ H*e*f“”] (8.16)
2

Expanding the log (1 + x) terms as
log(1+ Xx)=x-—+ — ..........

and inverse transforming to the power cepstrum gives

/ Ly 1
Crnlt) = Ouxlt) + - h(t=7) = () - 5 A(t=7) o A(t=1) + oo

'—’)2, X hctaT) * Bt T) o
L) 2

This means that the impulse response of the reflection, h(t), will be found in
the power cepstrum delayed by the echo time 7 and scaled down by the

h
+ Zh(-1+r)-(

attenuation factor ;i At the higher rahmonic quefrencies of the delay time the
2
impulse response is convolved with itself progressively more (and scaled down

progressively more). At negative quefrencies the mirror image is found, be-
cause the power cepstrum is an even function. Thus, provided both the cep-
strum of the original signal, and the impulse response of the reflection are
shorter than the delay time 7, it should be possible to extract the impulse
response by simple windowing in the cepstrum. It is interesting that this impulse
response may be Fourier transformed to give both the amplitude and phase
characteristics of the reflection, even though the power cepstrum has been
used. Ref.8.6 discusses a number of the practical points involved in making
such measurements.

8.3.3. Speech analysis

One of the earliest applications of the cepstrum was to the detection of
voiced speech and determination of voice pitch (Ref.8.7). This is because
voiced speech distinguishes itself from unvoiced speech in that it has a har-
monic structure, with a large number of harmonics of the fundamental voice
pitch (see Fig.8.7).
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Fig. 8.7. Spectra and cepstra for two vowels

Other applications of the cepstrum are based on its ability to separate source
and transmission path effects, provided they have different quefrency contents.
This is usually the case with speech where the source spectrum (e.g. of the
voice) is very flat, containing a large number of harmonics of the voice pitch,
but is modified by the resonance characteristics of the vocal tract, the so-called
“formants”, which determine for example which vowel is being uttered. Fig.8.7
shows spectra and cepstra for the vowels “oh” [o] and “ee” [i] and illustrates
how the differences mainly lie in the low quefrency part of the cepstrum, which
is dominated by the formant characteristic. Non-voiced sounds, such as many
consonants and whispered speech, do not give peaks in the cepstrum corre-
sponding to the voice pitch, and this can be used to separate voiced from
unvoiced speech (Refs.8.7, 8.8).
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It is also possible by editing in the cepstrum to remove one effect completely,
for example the voice, and thus simplify the tracking of the formants. Fig.8.8
(from Ref.8.9) shows a typical situation, a 3-dimensional representation of the
section “ea” from the word “Montreal”. The picture is quite confused, but by
“shortpass liftering” each of the spectra to remove the voice components, as
shown in Figs.8.9 and 8.10, only the formants are left and the picture becomes
much clearer.
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As another application of the power cepstrum, Ref.8.10 shows how it can be
useful to include it, along with spectral and other information, in pattern recog-
nition algorithms for speaker identification. inclusion of the cepstral informa-
tion improved the ability of the technique to exclude impostors.
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Fig. 8.10. Short pass liftered scan spectrum of “ea” in “Montreal”

8.3.4. Machine Diagnostics

The applications of the power cepstrum to machine diagnostics are based
mainly on its ability to detect periodicity in the spectrum e.g. families of
uniformly spaced harmonics and sidebands, while being insensitive to the
transmission path of the signal from an internal source to an external measure-
ment point.

Extensive families of harmonics are produced whenever short impulses are
repeated periodically, for example from a localised fault in a ball-bearing.
Fig.8.1 gives one such example. Note from the discussion of Section 4.6.1
(Fig.4.22) that clear patterns of harmonics are often only produced for the lower
order harmonics; cepstrum analysis will not be applicable at very high frequen-
cies where the harmonics merge.

Ref.8.11 discusses the case from which the signal of Fig.8.1 was taken. It is
shown there that the use of the cepstrum gives three main benefits:

(1) Detection of the harmonic pattern, indicating the fault, at an early stage,
even though the fundamental component (the “ball-pass frequency”) was not
detectable initially.
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(2) An accurate indication of the harmonic spacing, showing it to be 4,1 times
the shaft speed, which corresponded to the calculated frequency for an outer-
race fault in a particular bearing.

(3) The value of the main cepstrum peak was shown to be an excellent trend
parameter; as it represents the average over a large number of individual
harmonics, fluctuations in the latter (for example as a result of load variations)
were largely averaged out in the cepstrum value, which gave a smooth trend
curve with time.

Ref.8.12 describes a somewhat similar application, the detection of damaged
blades in a turbine. The resulting flow anomaly gives an excitation pulse once
per revolution, and a corresponding increase in the shaft harmonics in the mid
frequency range, which in an actual case gave a dramatic increase in the
corresponding cepstrum component.

Sidebands result from modulation of a carrier frequency by one or more
lower frequencies, and can give information about machine faults in some
cases. In the case of rolling element bearings, the presence of sidebands can
give additional information as to the faulty component, as the fault signal tends
to be unmodulated for outer race faults, modulated by the shaft speed for inner
race faults, and by the cage speed for rolling element faults. In gear vibrations,
modulation of the otherwise uniform toothmeshing component gives informa-
tion about the differences between the teeth on a particular gear, with side-
bands having a spacing corresponding to the rotational speed of that gear.

Fig.8.11 gives an example (from Ref.8.13) of the application of cepstrum
analysis to gear diagnostics.

Fig.8.11(a) shows the spectrum and cepstrum for a speed-up gearbox be-
tween an electric motor running at 50 Hz and a centrifugal compressor running
at 121 Hz. Components are seen in the cepstrum at 20ms (the time for one
rotation of the 50 Hz gear) and at 8,2ms (corresponding to the 121 Hz gear).
The second and third order “rahmonics” (harmonics in the cepstrum) of the
latter are also apparent, but when falling off monotonically, as in this case, they
can usually be disregarded; the first rahmonic contains the essential informa-
tion. Fig.8.11(b) is a similar comparison where the spectrum has been edited to
eliminate the low harmonics of both gear speeds (up to approx. haif the
toothmesh frequency). It is now evident from the cepstrum that only the 50 Hz
gear gives significant sidebands around the toothmesh frequency; the cepstral
components in Fig.8.11(a) from the 121 Hz shaft are apparently due entirely to
low harmonics having nothing to do with the gear mesh. Fig.8.11(c) shows a
similar comparison some months later, and it is now evident that even with the
edited spectrum, some modulation by the 121 Hz gear is occurring. This was
due in fact to a misalignment of this shaft which had developed in the mean-
time. Fig.8.11(d) shows the result of editing in the cepstrum to remove the
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Fig. 8.11. Application of cepstrum analysis to gearbox diagnosis




effects of the 50 Hz gear. The original cepstrum was from the same signal as
Fig.8.11(c), but comprising the whole frequency range. The spectrum shown
was obtained by transformation back from the edited cepstrum, and shows the
pattern of 121 Hz sidebands which were effectively masked in Fig.8.11(c).

Note that the procedure indicated in Fig.8.11(d) gives a similar result to that
which could be achieved by synchronous averaging (synchronized with the
rotation of the 121 Hz gear) without the need for a synchronizing signal.

Ref.8.14 contains a more detailed discussion of the application of the power
cepstrum to gear diagnostics, while the application of the complex cepstrum is
considered in Section 8.6.2.

8.4. PRACTICAL CONSIDERATIONS WITH THE POWER CEPSTRUM

The results of a cepstrum analysis are affected to a considerable extent
(compared with normal spectrum analysis) by artefacts introduced by the
analysis process, and by the signal itself, and so it is as well to discuss a
number of practical points.

Firstly, wherever the spectrum value is zero, in theory it is not possible to
take the logarithm. As an example, a truely periodic signal has finite values only
at the harmonic frequencies, and cepstrum analysis is theoretically impossible.
In practice, the presence of noise usually places a lower limit on (logarithmic)
spectrum level, even if it is the quantization noise in the FFT process. This
allows the cepstrum calculation to be carried out in a practical case. However,
as illustrated in Fig.8.12, the noise level in the spectrum will obviously have an
effect on the cepstrum results, and this should always be kept in mind when

dB

Reduction of
Signal/Noise ratio

Alternative . A&
base noise
levels

Frequency

760276

Fig. 8.12. Effect of noise level on size of cepstrum component
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making comparisons. Often, comparative measurements are made on signals
measured at the same point at different times, and it is valid to assume that the
background noise level is roughly the same at all times. Note that the relative
height of discrete frequency components above the noise is influenced by the
analysis bandwidth, and thus comparisons should only be made between cep-
stra obtained under identical conditions.

The relative noise level is not the only factor influenced by the filter bandwidth
(and characteristic). As illustrated in Fig.8.13, if discrete frequency components
are not adequately separated (or if the filter characteristic is too poor) a
bridging can occur between adjacent spectral components which reduces the
corresponding cepstral component. As this bridging would tend to be a fixed
number of dB below the peaks, growth in a group of harmonics/sidebands
would tend not to register in the cepstrum component (as compared with
growth above a fixed noise level). For this reason it is essential that equally
spaced components are adequately resolved in the original spectrum. As a
guide, the minimum spacing (i.e. the lowest periodic frequency) should repre-
sent a minimum of eight lines spacing in the spectrum (where Hanning weight-
ing is used).

Harmonic spacing Filter Shape

8 too small ——j |e— dB Factor too poor

Frequency Frequency

760278

Fig. 8.13. Effect of filter bandwidth and shape factor

Note that the filter characteristic (and harmonic spacing) also affect the
distribution in the cepstrum between the various rahmonics corresponding to a
particular spectral spacing. This is another reason for only making compari-
sons under identical analysis conditions. In general the most important informa-
tion is contained in the first rahmonic (i.e. how much the spectrum fluctuates up
and down); the higher rahmonics only give information about the distortion of a
particular periodicity, and this is influenced by artefacts such as the filter
characteristic. If the higher rahmonics are decreasing monotonically they can
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usually be ignored (except as confirmation that one is dealing with a periodic
structure rather than a random peak). However, Fig.8.14 shows an example
where every third rahmonic was predominant, and this indicates that both a
fundamental rotational speed (corresponding to the third rahmonic) and its
third harmonic (corresponding to the first rahmonic) each had a separate
influence in the spectrum. As described in Ref.8.14, the third harmonic effect
was due to “triangularity” of a gear.
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Fig. 8.14. Spectrum and cepstrurn for a case where the third rahmonic (120 ms)
represents a component in its own right

In order to achieve adequate resolution in the spectrum, it will sometimes be
necessary to use zoom. A cepstrum analysis can be made on a zoom spectrum,
but it is then virtually essential to use the magnitude of the analytic signal
defined in Eqn.(8.4). Fig.8.15 shows an example similar to that of Fig.8.1. When
the cepstrum is obtained from a baseband spectrum, the uniformly spaced
components fall at exact harmonic frequencies and the peaks in the real part of
the cepstrum are all positive. When a zoom analysis is made, with centre
frequency shifted very slightly upwards, the peaks are no longer confined to the
real part, but are correctly indicated in the magnitude | C,4(7)|. A similar sit-
uation could arise in a baseband analysis where the uniformly spaced compo-
nents (when projected) do not pass through zero frequency. This would for
example be the result of modulation of a carrier frequency by a non sub-
harmonic modulating frequency. Examples of this occur in the vibrations of
planetary gears, and of rolling element bearings.
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There is no general agreement on the scaling of cepstral results. In the
author’s opinion, this can best be expressed in terms of “dB peak-to-peak”.
Since logarithmic power spectra are normally expressed on a dB scale, their
Fourier transforms (the cepstra) can also be expressed in terms of dB. Fig.8.16
illustrates the meaning of scaling in dB peak-peak. If the spectrum had the
appearance of a sinusoid fluctuating up and down over an 80 dB range, it would
be scaled in the cepstrum as 80 dB p-p. In an actual case it tells how many dB
the spectrum, on the average, fluctuates up and down with a certain frequency
spacing. Note that only the zero quefrency (“DC”) component in the cepstrum
contains any information on actual scaling in terms of physical units. The zero
quefrency component can be expressed in dB re a given reference level. All
other quefrency components are in non-dimensional dB’s, representing pure
ratios (fluctuations about the “DC” level).

Note that scaling in this way implies that the spectrum is treated as a
stationary signal. The results of Fig.8.11, for example, have been compensated
for the shorter length of windowed spectrum in (b) and (c).
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Fig. 8.16. Cepstrum amplitude calibration in dB peak-peak illustrated through
the case of a 400-line spectrum transformed to the cepstrum using a

1 K (1024-point) transform

As already mentioned, the results are in any case dependent on analysis
method (and the signal itself) and the most important thing is to use consistent
scaling techniques and only compare cepstra obtained under similar condi-
tions. Note that the analyzers Types 2032/2034 do not scale in terms of dB
peak-peak, but in consistent units.
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8.5. THE COMPLEX CEPSTRUM

In principle the complex cepstrum is considerably more powerful than the
power cepstrum, but it is much more difficult to deal with. The main reason for
this is that the phase functon ¢(f) in Eqn. (8.7) must be a continuous function of
frequency rather than the principal value modulo 27 as is normally measured.
Fig.8.17 illustrates what is meant by “phase unwrapping”, to obtain a continu-
ous phase function. Where the phase curve is fairly smooth, it is not very
difficult to unwrap, using a simple criterion such as that the phase jump
between adjacent samples should be less than 7. This is not necessarily always
correct, however, and in the general case it is necessary to use a complex
algorithm such as that of Tribolet (Ref.8.15).
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Fig. 8.17. lIllustration of the meaning of “Phase-unwrapping”, whereby the
phase spectrum is made a continuous function of frequency

There is one situation, however, where the phase does not have to be
measured, and that is in the case of so-called “minimum phase” functions. As
shown in Ref.8.16, these have the property that the phase function ¢(f) is the
(inverse) Hilbert transform of the log magnitude function In|A(f)|. It follows
immediately that the complex cepstrum of a minimum phase function is causal
(i.e. exists for positive quefrencies only), because the real and imaginary parts
of its Fourier transform are related by a Hilbert transform (Section 2.6). The
even part is the power cepstrum (though obtained from a log amplitude spec-
trum scaled in nepers) and the odd part is the “phase cepstrum”, i.e. the
cepstrum of the phase function alone. By analogy with Fig.2.31, the power
cepstrum and phase cepstrum of a minimum phase function must be identical
at positive quefrencies.
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Thus if one is dealing with minimum phase functions, the complex cepstrum
can be obtained from the power cepstrum by simply doubling the positive
quefrency components, and setting negative quefrency components to zero.

A minimum phase function is one which has minimum phase lag, or phase
delay, for a given spectrum amplitude function. As explained in Ref.8.16, and
briefly in Appendix C, the transfer function of a stable, causal function has no
poles in the right half of the Laplace plane (where damping exponent —¢ is
positive). A minimum phase function must neither have poles nor zeroes in the
right half plane, because on taking logarithms the zeros become poles, which
would not allow the cepstrum to be stable and causal. Thus, a stable, causal,
non minimum phase function differs from a minimum phase function only by the
presence of zeroes in the right half plane. As shown in Figure C7 of Appendix C,
such a transfer function can always be considered to be the product of a
minimum phase function with an all-pass function having pole-zero pairs of the

general form :‘:—aa*. The all-pass function has unit amplitude, but adds a phase

lag of 2w for the passage of each pole-zero pair. This explains the term
“minimum phase function”. Note that because of the finite impulse response
time of the all-pass function, the minimum phase function also has the shortest
impulse response for a given frequency response amplitude function.

Because the effect of a frequency response function is additive in the cep-
strum domain (Eqn. (8.12)) it is of interest to investigate what form this will have.
It is simplest to do this using the z-transform, rather than the Laplace transform
(Ref.8.17). As shown in Ref.8.17, and briefly in Appendix C, the z-transform
version of a typical transfer function may be expressed as

|A| - ! -
1( K 1( k Z)

H(z) =

(8.18)
0 oz T (-4 2
k=1 T k=1 «

where the a, and ¢, are zeroes and poles, respectively, inside the unit circle (of
Fig.3.34), which corresponds to the left half of the s-plane, and the b, and d, are
zeroes and poles outside the unit circle (corresponding to the right half of the s-
plane). The moduli |a,|, | b, |ci| and |di| are all <1.

Taking logs and expanding the log(1—a z*") terms as power series, gives the

(sampled) cepstrum in terms of the poles and zeroes, for incremental values of
the time sample number n.

298



m _n Pi _.n
ag Ck
Thus, C,(n) = - — + — ,n>0
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As expected, the minimum phase part appears only at positive quefrencies,
and the “maximum phase” part at negative quefrencies. For stable causal
functions, the d, will be zero, so the maximum phase part will come entirely
from the zeroes, b,. Each of the terms is a complex exponential (in conjugate
pairs a damped sinusoid) further damped by multiplication by the hyperbolic
function 1/n.

8.6. APPLICATIONS OF THE COMPLEX CEPSTRUM

The complex cepstrum must be used whenever it is desired to return to the
time domain after editing in the cepstrum.

8.6.1. Echo Removal

Fig.8.18 shows a numerically generated example of echo removal from a time
signal using the complex cepstrum. The original signal is a damped one-sided
sinewave (the impulse response of a single degree-of-freedom system) to which
has been added two equi-spaced echoes. Even though these overlap the
original signal, the delta functions in the complex cepstrum are reasonably well
removed from the cepstrum of the basic signal (which dies out more rapidly
than the signal itself). It is thus relatively simple to remove the effects of the
echo from the cepstrum, and transforming all the way back to the time signal
shows that the removal has been quite efficient.
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Fig.8.19 shows the result of applying the same technique on an actual loud-
speaker excited by a 50 us square pulse in a normal room. The (first part of the)
time signal in Fig.8.19(a) shows a number of reflections starting at about 6,2ms
delay time. In contrast to the numerically generated example of Fig.8.18, the
phase spectrum had to be “unwrapped” and scaled down appropriately before
calculation of the complex cepstrum, which is shown in Fig.8.19(b). The effect of
the reflections in the cepstrum is seen to be rather spread out, indicating non-
ideal reflections and so a fairly drastic “short-pass lifter” was applied to remove
all reflections (a half Hanning window falling to zero at 5ms). The resulting log
amplitude and phase characteristics (to 10 kHz) are shown in Fig.8.19(c). For
comparison purposes, a measurement made on the same loudspeaker using
the TDS (Time Delay Spectrometry) technique is shown in Fig.8.20. Even though
this was made in a different room, the similarities are quite striking.

ot Expancad ) _Excanded: 1,

I

T T L I
log  amplituds

{c) Amplitude and phase characteristics
o from edited complex cepstrum —
et M ) A S R 57

Measu}gd Phas:e {10 kHz)

1

=, o e e e
=7 Measured Phase (8 kHz) 1 ——
{ i | | } . {

=SS E=SoF====

T
A o, 10KHz

10733

Fig. 8.19. Measurement of loudspeaker characteristics in a hard room using
complex cepstrum
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Fig. 8.20. Loudspeaker characteristics measured using TDS system

At the same time as the 10 kHz results of Fig.8.19 another measurement was
made using the cepstrum technique but with an upper limiting frequency of
5 kHz. Because of the double length of record, the added noise (and reflections)
caused problems with the phase unwrapping algorithm. There were three
places in the spectrum where the algorithm “jumped” the wrong way, introduc-
ing a discontinuity. In this case it was possible to solve the problem by applying
a decaying exponential window to the original time signal, thus considerably
reducing the effect of noise (and reflections) at the end of the record. After
removal of the reflections in the cepstrum, the signal was transformed all the
way back to the impulse response which was compensated for the exponential
window before forward transforming again to obtain the amplitude and phase
characteristics. The phase result is drawn in Fig.8.19(c) on the same scale (but
with twice the resolution).

The application of the complex cepstrum to loudspeakers is one case where
the phase unwrapping is not too difficult because the phase spectrum should be
smooth and the amplitude spectrum should not contain zeroes. For more
general signals, the phase unwrapping can present considerabie problems.

As a matter of interest, Fig.8.19(c) also includes the minimum phase charac-

teristic corresponding to the measured log amplitude characteristic (to 10 kHz),
calculated as outlined in Section 8.5.
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8.6.2. Deconvolution

One of the applications in speech analysis and resynthesis (Refs.8.18, 8.19)
involves deconvolution of the formant information from the voice/sound
source. As discussed in Section 8.3.3., most of the intelligence in the speech is
contained in the low quefrency part of the cepstrum (only a fraction of the total),
and so this can be efficiently transmitted along with information as to whether
the speech is voiced, and if so, the voice pitch. At the receiver end, the speech
is reconstituted using the low quefrency information to generate a filter charac-
teristic (or impulse response) for a source which would either be a variable
frequency pulse generator, for the voiced sections, or a noise generator for the
unvoiced sections. Despite the synthetic voice, the speech was reported as
sounding natural.

Another area where some progress has been made, is in the field of machin-
ery diagnostics. Vibration signals measured externally on a machine are always
a compound of source and transmission path effects. With the machine in
operation it is normally too difficult to measure the forcing functions at the
same time as the response in order to determine the frequency response
function of the transmission path. However, as we have seen in Equations (8.11)
and (8.12), for a single dominant source and transmission path, the two effects
are additive in the both the logarithmic spectrum and cepstrum. Moreover, as
for speech analysis, they are often largely separated into different regions in the
cepstrum.

One example is in gearbox vibrations, where the forcing function at the tooth
mesh has well-defined characteristics (Ref.8.20). The three dominant effects
are:

(1) Mean effects showing up at the toothmesh frequency and its harmonics.

(2) Non-uniformly distributed effects (e.g. local faults) showing up at the har-
monics of the individual gear speeds.

(3) Mesh transfer functions, expressing the lowpass filter effects of loadsharing
between teeth and dominated by the “contact ratios” (average number of
teeth in contact in either the peripheral or axial directions).

The first two of these effects are confined to very localised regions in the
cepstrum, while the third has a calculable effect. Ref.8.21 shows that a simple
windowing in the cepstrum (of a response signal) below the lowest rahmonic of
effects (1) and (2) above, and allowing in a simple way for the contact ratio
effect, can give a frequency response function (from the source to the external
measurement point) which compares favourably with a direct measurement
(applying a force at the mesh with the machine stopped). The major difference
between the two results appeared to be a lack of high quefrency information in
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the result obtained from the cepstrum, and Ref.8.22 suggests that high que-
frency information could be obtained selectively from between the rahmonics
(from the forcing function) and used in curve fitting algorithms to derive the
frequency response functions based on EQqn.8.19. This application requires
further development, but it would be very valuable to be able to determine
whether changes in an externally measured vibration signal result from a
change in the forcing function, or in the structural response.

A somewhat similar technique has been used in Ref.8.23 to regenerate

internal cylinder pressure signals in a diesel engine, from externally measured
vibration signals, making use of windowing in the cepstrum domain.
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APPENDIX A

FOURIER ANALYSIS
(a) Integration of a vector rotated through =
Without loss of generality, the case illustrated in Fig.2.16 can be taken, where

the resultant is directed along the real axis. Fig.A1 illustrates a typical compo-
nent vector of length A at angle 6.

Real

A cos 6 /

Imag. <

770511

Fig. A1. Integration of a rotating vector from —mw/2 to w/2

Its contribution to the resultant is A cos 6 as illustrated, and thus the average
over the total angle between -m/2 and w/2 is given by

1 w2
A cos 6 db (A1)
2

Aresult = —
t
resu ’ﬂ' _at
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/2
= i [sin 0]
’ﬂ' -/2
=%§ as stated in Eqn.(2.21)

(b) Fourier Transform of a rectangular function length T

Fig.A2 depicts a rectangular function of length T and height A, evenly divided

about zero time.

Ampl.

Time

N

770512

Fig. A2. Rectangular function of length T and height A

Mathematically, the time function may be defined as:

T T
g(t)—-A s ——2— < t<?
=0 , otherwise

Thus, from Eqn.(2.14) the Fourier Transform is given by:

G(f) = fi g(t)e2 dt

T2
=4 [ emat
-T2
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/2
= _ .A [e—jzwn]
jewt -T/2

jA o /2
= o f cos(2wft)—jsin(2x ft)

™ -T/2

sin(wfT)
=AT=>——_"7
(wfT)

(c) Bandwidth of a sin x/x function

(A.3)

Fig.A3(a) shows the amplitude characteristic corresponding to Eqn.(A.3),
normalised to a peak value of unity (this can be done without loss of generality
when it is the bandwidth which is required). The amplitude characteristic is thus
a | sin x /x| function where x = 7 fT. The amplitude squared, or power transmis-
sion characteristic is shown in Fig.A3(b) and it is this which must be integrated

to obtain the total power transmitted from a unit white noise source.

Sin (7 fT)
afT

A 3 _z2 _1 0 1 2 3 4 _» Frequency, f
T T T T T T T T
1
Sin? (7£T)
b) (T2
4 3 2 1 0 1 2 3 4~ Frequency, f
T T T T T T T T

770518

Fig. A3. (a) |sin x/x| (b) sin®x/x? where x = ©fT
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Thus, the total area under the power transmission curve:

] in2
f sin“(wfT) df

-0 (TfT)?
o in2
=f sh X ﬂ- dx where x = «fT
-0 X2 dX
1 o sin?x
- 2 - A4
TT f—oo x? o (A4

From tables of standard integrals, the value of the integral is found to be T,
resulting in a total area of 1/7T. Since the peak amplitude was normalised to
unity, dividing by this gives:

By = L as stated in Eqn.(2.23)

7

(d) Fourier Transform of an exponential function

Ampl.

2A

0 RC Time, t

770510

Fig. A4. Decaying exponential 2Ae "¢
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Fig.A4 depicts the exponential function defined by:

g(t) =2AeRC , t=>0

=0 s otherwise (A.5)

Thus, from Eqn.(2.14) its Fourier Transform is given by:
G(f) =2A f‘”e-t/nc 2Tt gt
0

=2A f°°e-(1/nc +j2mht gy
0

o}

—2A [ g-(1/RC+ j21rf)r:|
) 0

1

— + jorf

(RC Jew
2ARC

" 1+j2nfRC (A-6)

The peak amplitude of this function, occurring where f = 0, is thus given by
A(2RC) which will be seen to be the same as for the spectrum of the rectangu-
lar function (Eqn.A.3) if T = 2RC.

(e) Bandwidth of the spectrum of a decaying exponential
Normalising the function of Eqn.(A.6) to a peak value of unity gives
1/(1 + jmf2RC) which can be expressed as

1 - jwf 2RC
1 + (wf 2RC)?

The modulus squared of this function is:

5
1 + (wf 2RC)?

and the total integral under this power transmission curve is

fm af = 1 fw ax , where x = wf2RC
-o 1 + (wf 2RC)? T2RC J -« 1 + x2

(8- om0
“‘dx  w2RC
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From tables of standard integrals the value of the infinite integral is = and

thus the total area under the curve is 1/2 RC.

The effective bandwidth is obtained by dividing this by the peak value (unity)

and thus:

1

By = —2 RC

as illustrated in Fig.3.14.

(f) The Convolution Theorem

Referring to Section 2.5.3, it is given that:

G(f) = f"; g(tye 2™ dt
F(f) = f Z f(t)e 2" dt
H(f) = fi h(t)e 2™ dt

and g(t)= f(t) * h(t) = f°° fr)h(t = 7) dr

Substituting Eqn.(A.11) in (A.8) gives

G(f) = fi[fz f(r)h(t = 7) dr]e-f'"" dt

which by reversing the order of integration gives:
G(f) = fm f(T)[foo h(t - )e72m" dt] dr

-7 f(r)[f: hu)e >+ du| dr
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(A.10)
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where u = 7 (and thus du = dt)

This reduces to:
G(f) = [ f T f(r ez d‘r] [ f 7 h(uye iz du]

which by substituting Equations (A.9) and (A.10) gives:

G(f) = F(fy - H(f) as stated in Eqn.(2.31)
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APPENDIX B

Mean Square Error for Narrow Band Random Noise

The development given here basically follows that of Ref.3.1 but makes use of
concepts developed in Chapter 2 to clarify the argument.

A narrow band stationary random signal of bandwidth B is considered, such
as would be passed by an ideal filter of bandwidth B from a white noise source.
Fig.B1(a) illustrates the power spectrum of this signal which has a constant
power spectral density Wy within the passband. (Note that the 2-sided spectrum
representation is assumed.)

The complex spectrum corresponding to Fig.Bi(a) (i.e. the direct Fourier
transform of the time signal g(t) may be termed G(f) and has the properties:

|G(f)|? = W
inside the passbands
L G(f) = random
|G(f)|2=0
outside the passbands
£ G(f) = undefined (B.1)

When the signal g(t) is passed through a squaring circuit to obtain its power,
the resulting multiplication in the time domain (g(t) x g(t)) transforms by the
Fourier transform to a convolution in the frequency domain (see Section 2.5.3).

Thus, from Eqn.2.30 the frequency spectrum of g2(t) (= y(t)) will be given by:

vin = [7 c@cr¢) dp B2)
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The evaluation of this convolution integral must be treated separately for the
two cases:

(1) Displacement frequency f = 0
(2) Displacement frequency f # 0

a) w(f)

fe —» Freguency, f
b)

2fg
Frequency, f
750217

Fig. B1. Sketches illustrating the effect of squaring a narrow frequency band of

random noise.
(a) The noise frequency spectrum before squaring
(b) The output spectrum from the squaring device

For f = 0, Equation (B.2) reduces to

Yol0) = [* Glo)a-9) dp ®.3)

Since g(t) is real, its spectrum G(¢) is conjugate even (Eqn.(2.37)) and thus:

G(-¢) = G*(9) (B.4)
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Substituting in Eqn.(B.3) gives:
[7 a6 a0
IRECIR

Yoc(0)

f,+B/2
2 ff”;/z Wy d¢, making use of Eqns.(B.1)

2BWg (B.5)

Ypc (0) is of course the DC component of the squared signal, and considering
its dimensions (PSD x bandwidth) it obviously has finite power. Thus, to
express it on a power spectral density scale it must be a delta function weighted
with the value indicated by Eqn.(B.5).

As soon as the origins of the two spectra G(¢) and G(~¢) are displaced even
slightly from each other, i.e. f # 0 in Eqn.(B.2), then the remarkable effect due to
Eqgn.(B.4) no longer applies, and juxtaposed frequency components will now
have completely random phase relationships (instead of the phase always
cancelling out to zero at each frequency so that the amplitudes W add directly).
Thus the integration in frequency must be a vector addition of components with
random phase (even though their amplitudes will still be equal to Wg) and a
different approach is necessary.

As indicated at the end of Section 2.5.3, for signals with random phase (which
are multiplied in the time domain) it is valid to obtain the power spectral density
of the result by convolving the individual PSD spectra. Fig.B1(b) indicates the
results of doing this for the spectrum of Fig.B1(a). The central triangular portion
results from the fact that the greater the displacement of the two identical
power spectra, the less the overlap of the rectangular passbands, the result
decreasing linearly down to zero at a displacement equal to the bandwidth B
(zero overlap). The two smaller triangles occur similarly when the positive
frequency passband of one spectrum coincides with the negative frequency
passband of the other. In fact it is not strictly true that the power spectra are
convolved in this case because of the symmetry which exists about zero
frequency, even when the two complex spectra G(¢) and G(-¢) are displaced.
(This would not be the case if g(t) were multiplied by a different signal with the
same PSD.) The scaling of the result can be determined by considering the
limiting case as displacement frequency f— 0.

For the maximum value of the distributed portion of the spectrum (as op-
posed to the DC component already obtained), Eqn.(B.2) gives:

Yac(0) = lim [* awar¢) do (B.6)
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The difference with respect to Eqn.(B3) is that although the amplitude of the
vector to be integrated is still | G(f)|? (= W) its phase angle is random
(however small fis). Thus, considering the positive frequencies only, the ampli-
tude of the vector resulting from the integral of Eqn.(B6) will add according to
the square root of the range of the integration and thus equals Wy VB. Because
of symmetry, it is found that the resultant vector from the negative frequency
side has exactly the same phase angle (Fig.B2) and so the amplitude of the total
integral is equal to 2WgVB. The peak value of the power spectrum of the result
(as shown in Fig.B1(b)) is thus the square of this or

| Yac(0) |2 = 4W°B (B.7)
-0, —6,
—0g| —05 |9, 640,05 6, 65
/W
(a) Glg) B
Frequency
—¢ <3 © A | > ¢
Af ] e ~0; —0,
b5 04 636, 6, -0, \_93 —0g
(b)  GlAf - @) Ve
—p <— & > ¢
05 — 8,) 65 - 6,) (05— 64) (64 - 63)

w— 85}/ (6, - 0,) \93 - 02%05 -0,
o2 W, \

¢} Glg).G(Af — ¢}

Every component on the positive frequency
side is matched by one with exactly the same
phase angle on the negative frequency side

770715

Fig. B2. (a) Spectrum G(¢) of narrow band random noise, showing amplitude
VW; and indicating (random) phase angles 6,
(b) Reversed and displaced spectrum G(Af~¢p)
(c) Product G(¢). G(Af—p) which is to be integrated to obtain convolu-
tion for f = Af
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The continuous spectrum of Fig.Bi(b) can be said to represent the AC
fluctuations of the squared signal around the DC component which represents
the long-term average. The fluctuations can be reduced by low-pass filtering,
and Fig.B3 shows the effect of doing this with an averaging network whose
lowpass filter bandwidth is «B. Over a small frequency range in the vicinity of
zero frequency the spectrum level can be considered constant, and equal to the
value at zero frequency (4 Wy B). Thus, the AC power transmitted by an
averaging network of bandwidth 1/T, (and thus with effective averaging time
T,., see Appendix A) is obtained by integrating the PSD of the fluctuations over
the bandwidth, and is given by

AC power = 4Wg? % (B.8)

The standard deviation of these fluctuations is given by the square root of

this, or
/B
01 = 2 WB —T— (B-g)
A

where o, is the standard deviation of the power fluctuations (remembering that
the input voltage to the averaging circuit was in fact proportional to the power
of the original unsquared signal).

b awy28

B w-— | L\ — B
I Effective Energy Bandwidth

Averaging Network
/ Response

_.1_. 1 Frequenc'y
2T, 0 2T,

750218

Fig. B3. The low-frequency portion of the squared signal spectrum shown with
expanded frequency scale, together with the effect of passing the
spectrum through an averaging network
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The relative standard deviation of these power fluctuations can be obtained
by normalisation with respect to the DC power representing the true result

(Eqn.B.5) and thus:
B
2Wg [ —
gy Y Ta 1

Yoc0)  2WsB VBT, (B.10)

The relative standard deviation of an RMS estimate will be 1/2 of that given
by Eqn.(B.10) for a mean square or power estimate (because of taking the
square root) and that is the result given in Eqn.(3.9).
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APPENDIX C

Response of Physical Systems

One of the most important measurements in dual channel FFT analysis
(Chapter 7) is that of frequency response functions. This is because of the
simplification which results from formulating the response of linear physical
systems in terms of them. Appendix C gives a brief introduction to this formula-
tion. The particular case of mechanical structures will be taken, although a
parallel formulation can be made for electrical or acoustical systems.

The structure is assumed to be modelled as an assembly of masses, springs
and (viscous) dampers, acted on by a system of forces represented by the
vector {f(t)}, with responses in the same degrees-of-freedom (DOF’s) repre-
sented by the displacement vector {x(t)}. In terms of the mass matrix [M], the
stiffness matrix [K], and the damping matrix [C], the force balance can be
expressed as:

M1 {X(0)} + [C] {x(t)} + K] {x(t)} = {f()} (C-1)
Applying the Laplace transform to this system of equations gives:

(IM]1s? + [C] s + [K]) {X(s)} = {F(s)} (C.2)
where X(s) is the Laplace transform of x(t) and F(s) the Laplace transform of
f(t) in terms of the Laplace variable s. Eqn. (C.2) can be expressed more
concisely as:

(B8] {x} = {F} (C.3)
where [B] is termed the “Impedance Matrix”*, and is given by:

[B] = [M]s? + {C] s + [K] (C.4)

1 strictly speaking “impedance” refers to a formulation in terms of velocity, while B here is actually
“dynamic stiffness”, related to displacement.
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The elements of [B] can be formulated analytically, but are difficult to measure
in practice, because this would require the measurement of forces at all points
resulting from the displacement of one point only (while restraining the motion
of all other points). The relationship of Egn. (C.3) can alternatively be expressed
in the form:

{x} = [H] {F} (C.5)

where [H] (= [B]™") is known as the “Compliance Matrix”. The elements of [H]
can be measured in practice because they require only the measurement of
displacement at all points resulting from the application of a force at one point.

For no externally applied forces ({F} = {0} in Eqn. (C.3)) the equation for free
vibrations results, i.e.:

(8] {x} = {0} (C.6)

This constitutes an eigenvalue problem, with the only non-trivial solutions
occurring for values of s (eigenvalues) for which Det [B] = 0, and with corre-
sponding arrangements (eigenvectors, or mode shapes) of the displacement
vector {X}.

Kt) x(t)

Fig.C1. Single degree-of-freedom system with mass m, spring constant k, and
(viscous) damping coefficient c. Applied force f(t) and response x(t) are
also shown

Z

861457

For the simple case of a single degree-of-freedom system (Fig.C1) with mass
m, damping ¢, and spring stiffness k, Eqn.C.6 reduces to:

(ms® + cs + k) X(s) =0 (C.7)

with the two solutions:
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P A -
2 2m = YV m \2m
=-0, * jw, (C.8)

where o, = ¢/2m, w, is the damped natural frequency (in rad/s) corresponding
to the undamped natural frequency w, = %, and where less than critical

damping has been assumed (i.e. 6,7 < W)

jw
—— A
PR
p = -0, + jwp -
______ w, = Damped natural frequency
/
/ |
/|
// I wo = Undamped natural frequency
/ I
/ |
[ | /
| . o .
o, = Deca -
|\ * " Rate / i
\\ Vs
/ _._ o
\ Y, cos(f) = ¢ = —w(;L
\ / = critical damping ratio
N S
Y
P* = =0p - jwp \\
\ ~ — —
861458

Fig.C2. Figure illustrating the frequency and damping parameters associated
with a complex conjugate pair of poles for a single degree-of-freedom
system

1

In this case H = 1/B = —_—
ms‘+cs+k
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. Vm (C.9)
(s—sy) (s—52)

in terms of the “poles” s, and s, defined by Eqn. (C.8). It will be seen that at the

poles (s = s, or s,) the value of H goes to infinity.

Eqn. (C.9) can also be expanded in a partial fractions expansion to give the
result:

r re
+

§ (C.10)
s-8  s-s,

H(s) =

1
where r is called the “residue” and in this case equals ———
2jmw,

Figure C2 shows the location of the poles in the complex s plane, and
illustrates the relationship of o,, w, and w,. Fig.C3 (from Ref.7.5) shows a 3-
dimensional representation of | H| in the s-plane, highlighting the intersection
with the imaginary (jw) axis. This is recognized as being the amplitude of the
frequency response function H(jw) or H(f) (where w = 2xf) for a single
degree-of-freedom system.:Figure C4 displays such a frequency response
function in terms of its amplitude, phase, real part, imaginary part, and real part
vs. imaginary part (Nyquist diagram). Thus, as stated earlier, the frequency
response function is a restricted part of the transtfer function, H(s), evaluated
along the jw axis. Even so, the whole function is defined by the pole location
and the residue (see Eqn. (C.10)), and can thus be obtained as follows from the
frequency response function: w, is the (angular) frequency corresponding to the
resonance peak, g, is a direct measure of the damping, which can be deduced
from the width of the resonance peak (e.g. from the 3 dB bandwidth), while the
residue can be determined from the height of the peak.

Magnitude
IH]

861461

Fig.C3. 3-dimensional plot of | H| in the s-plane, highlighting the intersection
with the jw axis
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Real & imaginary Log mag & phase

IH]
Re

0 Frequency ———» 0 Frequency —————»

Nyquist Magnitude & Phase

(=]

Frequency ———  gs1456

Fig.C4. Various representations of the frequency response function of a single
degree-of-freedom system

More generally, for a multi degree-of-freedom system, with n degrees of
freedom, the determinant Det [B] will be a polynomial in s of order 2n. An
element H;(s) of the compliance matrix [H(s)], indicating the response in DOF /
to a force applied in DOF j, can be written in the form:

a,+ a;s+ as2+ ...+ a,s™
b, + bys+ b2+ ... + b,,s?"

Hy(s) = (C.11)

This can be expanded by a partial fractions expansion to give a sum of terms
representing n complex conjugate pairs of poles and residues, each pair of
which can be considered as the response of a single degree-of-freedom system
(cf. Eqn.(C.10)). Thus:
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n

r rix”
Hy(s) = 2 [ By ] (C.12)
k=1L s-py s—px

Similarly, H;(f), the frequency response function can be expressed as the
sum of the responses of n single degree-of-freedom systems.

Because of the linearity of the Laplace transform, Eqn.(C.12) can be inverse
transformed to give the impulse response corresponding to H;(s) as a sum of
complex exponentials (the impulse response function for the single degree-of-
freedom components). Thus:

n

hy(t) = 2 2 |ryl e sin (wet) >0 (C.13)
k=1
jw[rad/s] s-Plane
- Increasing Negative
:osm_ve natural damping
amping frequency
-
4 -
Increasing
damping (-0)[rad/s]
X p 4 X
X X X
861455

Fig.C5. How the position of a pole (pair) affects the impulse response
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The interpretation of the modal parameters g, w, and ry is the same as for
the single DOF parameters o,, w, and r in the impulse response function of
Fig.7.31. Figure C5 illustrates how the position of a pole in the s-plane influ-
ences the corresponding impulse response function. This makes it clear that
passive linear systems cannot have poles in the right-hand plane, as this
corresponds to negative ' damping and would require a continuous input of
energy.

Equation (C.11) can alternatively be factorised in terms of the roots of the
polynominals in both numerator and denominator. Thus:

m
[I (s-2)

/=1

2
kI=I1 (s-px)

H;(s) = (C.14)

3

Here, the poles, p,, are the same as in Eqn.{C.12) but the roots of the numera-
tor, z;, are known as “zeroes” because the value of the transfer function falls to
zero at these points.

(o)

861536

Fig.C6. Representation of a transfer function by the position of poles (x) and
zeroes (0) in the Laplace plane

1 Note that by the definition of damping factor ¢ (Eqn.(C.8)), positive damping corresponds to a
negative exponent of e, and negative damping to a positive exponent.
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Fig.C6 illustrates how a transfer function can be represented in terms of the
positions in the s-plane of its poles and zeroes. The case illustrated could
represent the frequency response of a stable causal system, because even
though it has zeroes in the right half plane, it has no poles there. In cepstrum
analysis (Chapter 8), one deals with the logarithm of the frequency response
function (and hence transfer function) and on taking logs, zeroes become poles.
The cepstrum will thus only be causal when there are no poles or zeroes in the
right half plane for the original transfer function. Functions which have this
property are known as “minimum phase” functions, because it can be shown
that for a given amplitude characteristic they exhibit minimum phase lag, and
the shortest possible impulse response. This can be briefly explained as fol-
lows:

jw jw jw
3
« A A B
O] x [ O O
X X
O 0}
—> X —] = —)
(-0) (~0) (-0)
O ' O
X X
0] x | © O
X X
Minimum phase Allpass Mixed phase
861463

Fig.C7. Representation of a mixed phase function as the product of a minimum
phase and an allpass function

A transfer function such as that depicted in Fig.C6 can be considered to be
made up as a product of two transfer functions as illustrated in Fig.C7. The first
is a minimum phase function (with no zeroes in the right half plane) and the
second is a so-called “all-pass” function with pole-zero pairs arranged so that
any zero in the right half plane of the final product comes from the all-pass
function, while the pole from the latter cancels a zero in the left half plane of the
minimum phase function. The equation for one pole-zero pair of an all-pass
function is:
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S—-a

Hapls) = s+a*

and the frequency response function, evaluated along the jw axis, is

jw-a

- (C.15)
jw+a*

Hap(jw) =

From Fig.C8 it will be seen that the amplitude | H,, (jw)| is unity, and this is
the reason for the term “all-pass”, since (as a filter) all frequency components
would be transmitted with unchanged amplitude. In going from small to large
values of w, the phase angle ~ (jw-a) changes from near zero to near —180°

(-m), while £ (jw + a*) changes through +m, and £ [—l—a*] through -mw.
jw

Thus, the overall all-pass function gives a phase change of —27 (a phase lag of
2m) for the passage of each pole-zero pair. This confirms that the minimum
phase function will have minimum phase lag for a given amplitude characteris-
tic (because each pole-zero pair in the all-pass function gives an additional lag
of 27). It is also evident that the minimum phase function will have the shortest
possible impulse response, because the multiplication by each all-pass function
in the frequency domain corresponds to a convolution with its impulse response
in the time domain. Note that the allpass function has no poles in the right half
plane, and is therefore causal and stable.

jws

M > jw
lic, - af £ (jw - a)

a

jwo

\/
(-0)

861462

Fig.C8. lllustration of the changes in the frequency response function
jw—a

W as w goes from a small value (w,) to a large value (w,)
w

In Chapter 8 it is shown that complex cepstrum analysis is considerably simpli-
fied for minimum phase functions, because the cepstrum is causal, and thus the
phase spectrum is the Hilbert transform of the log amplitude spectrum and
does not have to be separately measured.
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In Chapter 8 it is also discussed how the response characteristics of linear
systems can be expressed in the cepstrum domain. Because this involves
taking the logarithm of the frequency response function, it is better to express
the latter as a product of terms (Eqn.(C.14)) rather than as a sum (Eqn.(C.12)).
Moreover, it is found to be useful to express the frequency response in terms of
the z-transform rather than the Laplace transform for reasons which will be-
come obvious. As mentioned in Section 3.5.1, the z-transform is effectively the
equivalent of the Laplace transform when applied to sampled functions. It is
shown in Ref.8.17 that the equivalent of Eqn.(C.14) in the z-plane is:

m; m,
| Al I_I1 (1-a, z") kI—I1 (1-by 2)
H(z) = > o (8.18)
—_— —1 f—
kg1 (1-cc z7) kI=I1 (1-dk2)

where the a, and b, represent zeroes, and the ¢, and d, represent poles. The
moduli |a|, |b|, |ck| and | d,| are constrained to be < 1, and therefore the
terms in both the numerator and denominator are divided into two groups,
depending on whether the pole or zero is inside or outside the unit circle. It will
be seen that the corresponding bracketed term goes to zero when z = a, or ¢,

s-Plane z-Plane
Poles give <————’——> Poles Poles give
positive . give negative
damping Jw negative damping
(stable) A damping (unstable)
{(unstable)
Damping | O

factor )
X Poles give

positive
damping
Frequency tabl
factor © (stable) Fr;aqu(ency
actor
(~0) (1,0)
o 0]
X Unit X
circle
[0}
(0]

861460

Fig.C9. Equivalence of transfer function characteristics in the s-plane and z-
plane
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(points inside the unit circle) or z = 1/b, or 1/d, (points outside the unit cir-
cle). Fig.C9 shows how features in the z-plane relate to the equivalent ones in
the s-plane. Thus, poles inside the unit circle (equivalent to the left half plane)
correspond to positive damping, while poles outside the unit circle (equivalent
to the right half plane) correspond to negative damping and cannot be present
for stable causal systems.

In Ref.8.17 it is shown how taking logarithms of Eqn.(8.18) changes the
products to sums of terms involving log (1-a z*'). Expanding these as power
series gives terms which can be interpreted as the z-transforms of other series
which form part of the cepstrum of the response function. For the ¢, terms, for
example, (the poles within the unit circle), the derivation is as follows:

1 Pi
log |—5; = -2 log (1-¢c z7)
. k=1

S (sel) . S5 o)L

n=1"k=1

n

. Pi
which will be seen (Eqn.(3.14)) to be the z-transform of 3, %X for n > 0.
k=1 N

The final result, for quefrencies other than zero (where the series cannot be
evaluated) is that the cepstrum is given by:

m; Pi

a” c
Caln) = -2 =% + ¥ X ,n>0
k=1 N k=1 n
(8.19)
me -n Po -n
and = ﬁ‘——- a” ,n<o0

k=1 N k=1 N

As mentioned at the end of Section 8.5, each of these terms is a complex
exponential (in conjugate pairs a damped sinusoid) further damped by the
hyperbolic function 1/n. This is illustrated by the example of Fig.8.18, where the
basic signal rather fortuitously represents the impulse response of a single
degree-of-freedom system. Fig.8.18 (e) and (h) are reproduced in Fig.C10,
where it can be seen that the cepstrum (Fig.C10(a)), like the impulse response
(Fig.C10(b)) is a damped sinusoid with the same frequency. The cepstrum is
damped more heavily (by the hyperbolic effect) and there is also a phase shift.
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The single degree-of-freedom system has no zeroes and is minimum phase.
Thus the phase spectrum is the Hilbert transform of the log amplitude spectrum
(Fig.8.18 (f) and (g)) and the cepstrum (like the impulse response) is causal.
However, because the log amplitude spectrum is even, the damped sinusoid in
the cepstrum is a cosine, whereas that in the impulse response is a sine.

SSES SE R N .
(a) Cepstrum

N

861459

Fig.C10. Comparison of (complex) cepstrum and impulse response for a single
degree-of-freedom system
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