
Least action criteria for blind separation of structural modes 

J. Antoni
a
*, S. Chauhan

b
, T. Monier

a
, K. Gryllias

a
 

a
Laboratoire Vibrations Acoustique, University of Lyon, F-69621, Villeurbanne, France 

b
Bruel & Kjaer Sound and Vibration Measurement A/S, Skodsborgvej 307, DK 2850, 

Naerum, Denmark 

 

 

* Corresponding author 

E-mail address: jerome.antoni@insa-lyon.fr 

Running title: Least action criteria for blind separation of modes 

 

Abstract 

It was recently shown that blind source separation (BSS), as originally developed in the 

signal processing community, can be used in operational modal analysis to separate the 

responses of a structure into its individual modal contributions. This, in turn, allows the 

application of simple single-of-degree-freedom techniques to identify the modal parameters 

of interest. Several publications have recently attempted to give a posteriori physical 

interpretations to BSS – as initially developed in telecommunication signal processing -- 

when applied to the field of structural dynamics. This paper proposes to follow the route the 

other way round. It shows that several separation criteria purposely dedicated to operational 

modal analysis can be deduced from general physical considerations. Three such examples 

are introduced, based on very different properties that uniquely characterise a structural 
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mode. The first criterion, coined the “principle of shortest envelope”, conjectures that the 

envelope of a modal response has, among all possible envelopes, the shortest length. That 

such a principle leads to the governing differential equation of a single-degree-of-freedom 

oscillator is proved from calculus of variation. The second criterion, coined the “principle 

of minimum spectral variance”, conjectures that the frequency spectrum of a structural 

mode is maximally concentrated around its central frequency. Finally, the third criterion, 

coined the “principle of least spectral complexity”, states that a structural mode has the 

lowest possible entropy in the frequency domain. All three criteria can be expressed in 

terms of a mixing matrix whose columns contain the unknown mode shapes. The recovery 

of the latter is then trivially achieved by minimising the criteria. Extensive simulations 

show that the proposed criteria lead to figures of merit very similar to those of the state-of-

the-art, while at the same time providing physical insight that other algorithms issued form 

the signal processing community may dramatically lack. 

 

Résumé 

Des recherches récentes ont montré que certaines méthodes de séparation aveugle de 

sources, initialement développées pour les signaux de télécommunication, permettent de 

décomposer les réponses vibratoires d’une structure en ses différentes contributions 

modales. L’avantage qui s’ensuit pour l’analyse modale opérationnelle est une 

identification immédiate des paramètres modaux par application des techniques 

traditionnelles dédiées aux systèmes à un degré de liberté, et ceci sans connaissance des 

forces excitatrices appliquées à la structure. L’approche est dite « aveugle », car elle ne 

nécessite aucune connaissance préalable des paramètres structuraux. Plusieurs publications 

ont récemment tenté de donner aposteriori une interprétation physique aux méthodes de 
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séparation aveugle de sources, lorsque appliquées en dynamique des structures. Cette 

communication propose de suivre la démarche inverse en montrant que des critères de 

séparation inédits et ad hoc peuvent être définis suivant des considérations physiques 

générales. Trois exemples sont donnés. Le premier critère, dit de « moindre longueur de 

l’enveloppe », stipule que l’enveloppe d’une réponse modale est la plus courte parmi toutes 

les trajectoires possibles. L’équation du mouvement qui en découle est obtenue par calcul 

variationel. Le second critère, dit de « moindre variance spectrale », stipule que la densité 

spectrale d’une réponse modale est la plus concentrée possible autour d’une fréquence 

centrale. Enfin, le troisième critère dit de « moindre complexité spectrale » stipule qu’une 

réponse modale a la plus faible entropie possible dans le domaine fréquentiel. Tous ces 

critères peuvent être exprimés selon une intégrale de moindre action en fonction de la 

matrice de mélange qui contient les déformées modales inconnues. L’estimation de celles-

ci est solution de leur minimisation. Plusieurs simulations montrent que l’approche 

proposée donne lieu à des résultats de séparation très similaires à ceux de l’état de l’art, 

l’avantage principal étant d’être issus de considérations physiques spécifiques à la 

problématique de l’analyse modale opérationnelle contrairement aux autres méthodes de 

séparation aveugle de sources.  

Keywords: Operational modal analysis ; blind source separation ; least action principle ; 

calculus of variation; structural dynamics 
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Nomenclature 

 

 

BSS  Blind Source Separation  

MAC  Modal Acceptance Criterion 

MSEnt  Minimum Spectral Entropy 

MSV  Minimum Spectral Variance 

OMA  Operational Modal Analysis 

SHE  Shortest Envelop 

SNR  Signal to Noise Ratio 

SOBI  Second Order Blind Identification 
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1. Introduction 

Operational modal analysis (OMA) aims at identifying the modal properties of a 

structure given only its responses in ambient environment, that is without having access to 

actual excitation forces. This happens whenever specific excitation setups cannot be 

installed, because of technological or financial reasons, or simply because artificial 

excitations would not be representative enough of the actual in-situ force field. Many 

techniques have been proposed over the last decades to solve the OMA problem from 

different angles of attack – see e.g. [1],[2]. One recent and elegant solution consists of 

viewing the modal expansion of a set of structural responses as a mixture of modal 

coordinates -- the “source signals” -- where the mode shapes fill the columns of a mixing 

matrix. Then, under quite mild assumptions concerning only the mutual independence of 

the sources, it is possible to identify all constituents of the mixture up to an arbitrary scaling 

of the mode shapes [3]-[20]. In turn, standard single-degree-of-freedom techniques can be 

applied on the separated modal coordinates to identify the global modal parameters. Such 

an approach is referred to as “blind”, since it does not require the knowledge of the mass 

and stiffness matrices, as is usually the case to recover mode shapes – e.g. from an 

eigenvalue decomposition. It is also different from classical modal identification, since it is 

not based on any parametric model. The current state-of-the-art in the context of 

operational modal analysis is rooted on the so-called Second-Order Blind Identification 

(SOBI) algorithm, which has proven extremely robust: its principle consists in separating 

sources – i.e. modal coordinates – which are least mutually correlated at several time-lags 

[4][6][7][8][9][20]. This was shown to work surprisingly well, even though the assumption 

of mutual decorrelation of modes is not truly fulfilled as soon as the system is non-

conservative (i.e. presence of damping). Like many other BSS algorithms, SOBI was 

initially discovered in the signal processing community [21]-[25] and the fact that it found 

pertinent applications in the field of structural dynamics might be more a fortunate 
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coincidence than the result of an intended research program. As a matter of fact, several 

publications have recently attempted to give a posteriori physical interpretation to SOBI 

[3][4][9][20].  

 

The objective of this paper is specifically to tackle the issue the other way round. Given 

the mixture model suggested by the modal expansion theorem, can one devise ad hoc 

criteria – inspired from general physical principles – that can separate individual modes?  

 

The answer to this question is shown to be positive. In addition, it appears quite 

surprisingly that many such criteria exist, which result in as many new separation 

algorithms. This paper explores three of them, based on very different properties that 

uniquely characterise a structural mode. The first criterion, coined the “principle of shortest 

envelope”, conjectures that the envelope of a modal response has, among all possible 

envelopes, the shortest length. That such a principle leads to the governing differential 

equation of a single-degree-of-freedom oscillator is proved from calculus of variation. The 

second criterion, coined the “principle of minimum spectral variance”, conjectures that the 

frequency spectrum of a structural mode is maximally concentrated around its central 

frequency. Finally, the third criterion, coined the “principle of least spectral complexity”, 

states that a structural mode has the lowest possible entropy in the frequency domain. All 

three criteria can be expressed in terms of a mixing matrix whose columns contain the 

unknown mode shapes. The recovery of the latter is then trivially achieved by minimising 

the criteria. One difference with SOBI – and other related BSS algorithms – is that mode 

shapes are recovered one by one, in a deflation way, rather than simultaneously in batch 

way. Extensive simulations show that the proposed criteria lead to figures of merit very 

similar to those of SOBI. Their main advantage is yet conceptual rather than algorithmic; 

indeed, least action principles provide physical insight into the mechanism of BSS that 
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other algorithms issued form the signal processing community may dramatically lack. No 

doubt that other physical properties could be exploited to define still new separation criteria 

by following the lines of this paper. 

 

2. Blind separation of modal responses 

It was recently shown that blind source separation (BSS), as originally developed in the 

signal processing community, can be used in operational modal analysis (OMA) to separate 

the responses of a structure into its individual modal contributions. The central idea is to 

view the modal expansion of a set of responses as a mixture of modal coordinates. Namely, 

let  iy t , i = 1, ...m , be the structural responses, measured by a set of m sensors, of an n-

degree-of-freedom system with modal coordinate  j t ,  j = 1,...,n, and mode shape 

components  ij t . According to the modal expansion theorem,  

      
1

n

i ij j i

j

y t t n t 


   (1) 

where the extra term  in t  accounts for possible measurement noise. Put into a matrix 

form, this reads 

 

      t t t y Φη n  (2) 

 

where      1

T

nt x t x t   x  ( ,  x y η  and n ). Equation (2) exhibits a strong similarity 

with the mixture model found in BSS, where the modal coordinates play the roles of the 

sources and the mode shapes fill the columns of the mixing matrix. This has suggested the 

application of BSS on the measured structural responses  iy t  in an attempt to recover the 
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modal matrix Φ  together with the individual modal coordinates  j t  with no other 

assumption than the mutual independence of the latter. One prominent tool in the state-of-

the-art is the SOBI algorithm, which achieves separation of sources by forcing their 

decorrelation at several time-lags. Specifically, let      
H

y t t  R y y  be the 

correlation matrix of the measurements under steady state regime at time-lag , where  

= 
1limT

T
T dt

   
denotes the time-averaging operator and H  stands for the complex 

conjugate operation (complex data will be considered further on). Then, from Eq. (2), 

 

 

      2H

y n     R ΦR Φ I , (3) 

 

 

where temporally and spatially white noise has been assumed. Since the sources are 

assumed mutually independent,   R  should be a diagonal matrix for any value of . 

Therefore, Φ  happens to be the generalised matrix of eigenvectors which diagonalises all 

matrices  y R  in a given set of time-lags. This provides the mode shapes of interest. In 

turn, the diagonal elements of   R  return the autocorrelation functions of individual 

modal coordinates, from which global modal parameters can be extracted from standard 

single-degree-of-freedom techniques. 

 

The physical significance of SOBI when applied to structural responses was investigated 

in Refs. [3][4][9][20]. In particular, it has been pointed out that the assumption of mutually 

independent (and therefore uncorrelated) modes does not hold true except for conservative 
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systems, i.e. with no damping. However, SOBI happens to be very robust against this 

assumption, for instance much more than JADE which was historically the first choice to 

solve the OMA problem [3]. Rather than trying to justify a posteriori the applicability of 

BSS algorithms to structural dynamics, this paper proposes to follow the other way round. 

A general approach is proposed which results in the deduction of several new separation 

criteria based on first physical principles. 

 

3. Separation from ad hoc criteria – general principles 

This section briefly describes the proposed methodology on a general basis. The effort is 

put on a deductive presentation, so that the same mechanism can be applied to the various 

separation criteria to be presented hereafter. First of all, the concept of modal filter is 

reviewed, since this is where BSS and OMA meet each other. Second, the concept of 

“action” is introduced for blindly estimating modal filters. Third, a deflation approach to 

separation is adopted since this has some algorithmic advantages, even though a batch 

approach may be envisioned as well. 

 

3.1. The concept of modal filter 

The natural way to inverse Eq.(1) – or its matrix version (2) – is to find a set of 

coefficients 
ijw , i = 1,...,n, j = 1,...,m, such that 

      
1

ˆ
m

H

i ij j i

j

t w y t t 



  w y  (4) 

 

(wherein 
*
 denotes the conjugate symbol) returns a “good” estimate of the modal coordinate 

 i t . Vector iw is referred to as a “spatial” or “modal filter”, a concept which largely 

precedes the introduction of BSS in structural dynamics [26]. These are the primary 

unknowns of the problem. It now remains to specify how these can be found blindly, i.e. 



- 10 - 

without measuring anything else than the structural responses  iy t  and independently of 

any parametric model. 

 

3.2. Action integral 

Inspired by the variational principles of mechanics, let us define a functional  ,x x , 

the “action”, which takes an arbitrary signal  x t  and its derivative  x t  as inputs. The 

central idea of the proposed methodology consists in designing  ,x x  such that it 

achieves a minimum if signal  x t  fulfils some physical property of a modal coordinate, 

that is when    ix t t .  After substituting the estimated modal coordinate  H

i tw y  for 

its theoretical value  i t , the issue of blindly estimating the modal filter 
iw  amounts to 

minimising the following cost function 

 

    ; ,H HJ w y w y w y  (5) 

 

with respect to w . In many cases, the above minimisation will be efficiently carried out by 

means of a gradient descent algorithm (see Appendix B).  

 

3.3. Iterative separation 

Let us assume that a first modal filter, 1w , has been found which minimises  ;J w y  

and therefore provides an estimate  1̂ t  of  1 t . In order to proceed to the extraction of a 

second modal coordinate, the effect of the first mode must be subtracted from the structural 

responses before trying to minimise  ;J w y  again. This may be achieved as follows. Let 
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   1 1 1 1
ˆ ˆ ˆ Ht t φ φ w y  be an estimate of the modal responses  1 1 tφ , where mode shape 1φ  

stands for the first column of the modal matrix Φ . The minimum mean-square estimate of 

1φ  is found as          
2 2

1 1 1 1
ˆ ˆ ˆ ˆArgmin | |t t t t t  


  φφ y φ y . Therefore, 

 

          .1 1 1 1 1
ˆ ˆ ˆ Ht t t t   y y φ I φ w y  (6) 

 

is an estimate of the structural response free of the effect of mode 1. By repeating the same 

procedure recursively, on arrives at the following separation algorithm: 

 

step 1: 

  1 Argmin ;J ww w y  (7) 

                .0 t ty y  

step k: 

      . 1 !
ˆ H

k k k
t t


 w y  (8) 

         2

. 1 !
ˆ ˆ ˆ| |k k kk

t t t 



φ y  (9) 

            . ! . 1 !

1

ˆ ˆ ˆ
k

H

k k k i ik

i

t t t t




   y y φ I φ w y  (10) 

  1 . !Argmin ;k kJ  ww w y  (11) 

  

stop when k = n. 
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where  . !k ty  denotes an estimate of the structural response free of the effect of modes 1 to 

k. The algorithm directly returns an estimate of the modal matrix, Φ̂ , which contains mode 

shapes ˆ
kφ  

in its k-th column, and of the corresponding modal coordinates  ˆ
k t .

 
If needed, 

an estimate of the overall separation matrix (i.e. the estimated inverse 1ˆ 
Φ  of Φ  such that 

   1ˆˆ t tη Φ y ) is returned by the matrix whose k-th column is 

 

  
1

ˆ ˆ
k

i H

i i

i

 φ I φ w . (12) 

 

Please note that the series of recursions given by Eqs. (7) to (11) extracts modes one by 

one without forcing them to be mutually orthogonal (i.e. uncorrelated at time time-lag 

0  ) contrary to other BSS algorithms such as JADE or SOBI. This removes a strong and 

artificial condition actually conflicting with the true physics of the problem. 

 

The next section now proposes three least action principles which will furnish relevant 

candidates for the action  ,x x  and its corresponding cost function  ;J w y . 

 

4. Least action principles 

A general attribute of a structural mode is to concentrate most of its energy around a 

specific frequency. This will be declined in three different ways. The first one is inspired 

from the concept of geodesic in the time-domain, the second one from that of barycentre in 

the frequency domain, and the third on from that of entropy in the frequency domain. 

Details of the results reported in this section are given in the Appendix. 
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4.1. Principle of shortest envelope (SHE) 

Let us construe the modal coordinate  t  as the “trajectory” of the corresponding mode 

in the time-domain. Let us then define the quadratic envelope of the mode as   2| |a t , 

where  a t  denotes the analytical signal version of  t [27] (see Appendix on how to 

compute the analytical signal). The principle of shortest envelope conjectures that, among 

all possible trajectories, a mode will try to minimise that trajectory with the shortest 

envelope. More specifically, let dl be the element of length of the envelope   2| |a t  

corresponding to time increment dt such that, from the Pythagorean theorem, 

  
2

2 2 2| |adl dt d t   (see Fig. 1). Thus the total length over a time interval of duration 

T  reads   
2

21 | |a
T T

dl dt d t dt   . For stationary signals, the action is defined as 

average envelope length per unit of time, 

 

    
2

2 * *1
, lim 1 | | ( , , , ) 1a a a a a a a

T
T

d
dt t

T dt
      



 
    

 
  (13) 

with  Lagrangian 

  
2

* * *( , , , ) 1 4a a a a a a        . (14) 
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  This is schematically illustrated in Fig. 1. Note the quadratic envelope   2| |a t  was 

actually considered in Eq. (13) because it physically reflects fluctuation of energy, a 

quantity which is naturally minimised at the thermodynamic equilibrium of a system, and 

also because it is easily tractable. The envelope magnitude  | |a t  could have been 

considered instead of its square, leading to  

 

    
2

* *1
, lim 1 | | ( , , , ) 1a a a a a a a

T
T

d
dt t

T dt
      



 
    

 
  (15) 

with Lagrangian 

 
 

2
*

* *

2
( , , , ) 1

| |

a a

a a a a

a

 
   




  , (16) 

 

a criterion very similar to Eq. (14) up to a normalisation by 2| |a  under the square root. 

 

Because a mode has no defined magnitude and to avoid the trivial solution, the 

minimisation of the action must be achieved under the constraint of constant – say unitary – 

energy   2| | 1a t  . Expressed in terms of the unknown modal filter w, action (13) 

provides the cost function  

 

  
 

2

( ) ( )
; 1 4

a

H H

a a

a H

y

t t
J

 
  
 
 

w y y w
w y

w R w
 (17) 

where ay  stands for the analytic signal version of y  and    
a

H

y a at tR y y .  
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In practice,  ; aJ w y  will be easily minimised by means of a descent gradient 

algorithm, as shown in Appendix B. Yet, it is also interesting to work out the minimum 

from a theoretical point of view by applying the Euler-Lagrange equations to Eq. (13). 

After some calculus, this leads to the following “equation of motion”   

 

  * 0a a

d

dt
    (18) 

 

of the mode, to which   ( ) ,   ( )i t

a t e t    is, one solution for arbitrary real time-

varying phase ( )t . In words, pure sinusoids (with possible frequency modulations) are 

those trajectories with shortest envelope,  , 1a a   ; in terms of geodesics, this 

corresponds to straight lines. Although actual modal coordinates will never equal pure 

sinusoids due to the presence of dissipation, this result tells is that the minimisation of 

 ; aJ w y  will separate modes which are the closest possible to sinusoids, which is 

consistent with the property of modes to be highly concentrated around specific 

frequencies.   

In a more abstract way Eq. (18) may be seen as the conservation law of quantity  *

a a  . 

From Noether’s theorem  [30], this implies invariance of the Lagrangian (14) under 

translation and scaling (i.e. change of units) transformations, as expected from the 

stationarity assumption inherent to the steady state regime and from the normalisation of 

modal coordinates to unity. 
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Figure 1: Illustration of the principle of shortest envelope. Signal (a) is a mixture of two 

modes with natural frequencies 0.05 and 0.12 (arbitrary units); the length of its envelope is 

S=1.0473. The length of the envelopes of modal constituents shown in (b) and (c) is 

S=1.0004 and S=1.0010, respectively. Signals (d-f) bear the same interpretation in the case 

of two closely space natural frequencies, at 0.05 and 0.06, which better emphasises the 

increase in length of the mixture (d) due to a beating phenomenon. Note the theoretical 

length of a pure sine is S=1. 

 

4.2. Principle of minimum spectral variance (MSV) 

The principle of shortest envelope proceeds from a time-domain vision of modal 

responses. A frequency domain vision may be well-suited as well, especially to reflect the 

property of high energy concentration of a mode around a central frequency. To see this, let 

us define  S f  the power spectrum (energy spectrum in the case of transient responses) 
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of the modal coordinate  t . Viewing the latter as a probability density function of the 

mode “trajectory” in frequency, a measure of concentration around the barycentric 

frequency f0 is given by the spectral variance 

 

 

2

0
0 0

0

0 0

( )( ) ( )
0  with  

( ) ( )

S f f f df S f fdf
f

S f df S f df

 

 

 

 


 

 

 
. (19) 

 

This is illustrated in Fig. 2. Converted back to the time-domain by use of the Parseval’s 

identity, this provides the action 

 

    
2

2 2 *, | | | |a a a a a a        . (20) 

 

Thus, the modal filter w should achieve the minimum of the following cost function 

 

  
 

2

;
a aa

a a

HH
y yy

a H H

y y

J
 
  
 
 

w R ww R w
w y

w R w w R w
 (21) 

 

where    
a

H

y a at tR y y  and    
a a

H

y y a at tR y y .  

 

In contrast to Eq. (13), action (20) is difficult to express in terms of a Lagrangian.  However 

it does not prevent application of calculus of variation to produce the “equation of motion” 

 

  2 * 2| | 2 | | 0a a a a a a ai            (22) 



- 18 - 

 

of the mode, to which    
,   

i t

a t e
 

 


  , is found as a solution with  , 0a a   . 

Note this is more restrictive than the solution previously found for the principle of shortest 

envelope since it precludes frequency modulation, yet at the same time it is also more 

physical in this respect. Indeed, for this particular solution, the action  

 

    2 2 2

1

, | | | | 2a a a a K U    



     (23) 
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boils down to (twice) the total energy of a simple oscillator with mass 1, kinetic energy 

21
2

| |aK  , potential energy 2 21
2

| |aU   , and stiffness 2 . Therefore minimising 

the spectral variance amounts to minimising the kinetic energy K of the mode given a 

constant potential energy 21
2

U   (remember the constraint 2| | 1a  ). 

 

 

V = 279.84; H = -5.3191 V = 1.99; H = -5.7724 V = 4.47; H = -5.7698

f f f

= +

(a) (b) (c)

 

Figure 2: Illustration of the principles of minimum variance and minimum entropy. 

Spectrum (a) is a mixture of two modes with natural frequencies 0.05 and 0.12 (arbitrary 

units); its spectral variance is V=2791.84 and spectral entropy H=-5.3191. The spectral 

variances and entropies of the modal constituents shown in (b) and (c) are V=1.99, H=-

5.7724 and V=4.47, H=-5.7698, respectively. 

 

 

4.3. Principle of minimum spectral entropy (MSEnt) 

Keeping on with the interpretation of the power spectrum  S f  as the probability 

density function of the trajectory of a mode in the frequency-domain (see Fig. 2), another 

least action principle is to conjecture that the trajectory should be the less erratic as 

possible, that is with the least entropy 
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 

 
  
  
 


 

. (24) 

 

The motivation of this conjecture is as follows. As known from the field of information 

theory, the largest possible entropy will correspond to a flat spectrum,   2S f  , 

whereas the smallest possible one will correspond to a delta spectrum, 

  2

0( )S f A f f   , i.e. a pure line. The principle of minimum spectral entropy will 

therefore again favour highly concentrated structures in frequency – that is pure sinusoids 

in the time-domain. 

 

The time domain counterpart of ( )H S , the action  ,a a  , is unfortunately difficult 

to express and does not actually give further insight. For this reason, this third least action 

principle will not be assigned an equation of motion. The corresponding cost function  

 

  
   

0
; ln  

a a

H H

y y

a H H

y y

f f
J df

  
   

 
 


w S w w S w

w y
w R w w R w

 (25) 

 

will directly be minimised with respect to w, where  y fS  denotes the spectral matrix of 

the measurements and where the Parseval’s identify  
0 ay yf df


 S R  has been used. 
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4.4. Discussion 

Several remarks are in order at this juncture. First, the fact that the proposed least action 

criteria do not depend on the structural parameters (e.g. mass, stiffness and damping values) 

cannot be overemphasised. Indeed, this complies with the BSS philosophy to be able to 

separate the independent components passing through a system without any knowledge of 

the system itself. It also explains why the homogeneous “equations of motion” (18) and 

(22) are quite different from the usual differential equation, 2

0 0 02a a a f        , 

which requires knowledge of parameters 0  and 0  and of the unknown forcing function 

( )f t .  

Second, it was found that minima of criteria (13), (19) and (24) are returned by pure 

sines which, strictly speaking, are solutions of conservative systems only. Fortunately it 

does not mean that the proposed criteria will fail in the presence of energy dissipation, but 

simply that they will try to separate the most lightly damped modes among all possible 

solutions. Again this perfectly complies with the physical definition of a mode, to which 

criteria (19) and (24) are quite explicit in this respect (they minimise the modal bandwidth 

which is inversely proportional to the damping ratio). Intuitively, a lightly damped mode 

will produce slowly modulated sinusoids that are quite close to the theoretical solutions.  

However, from a numerical point of view, it is clear that the degree of damping will 

directly impact upon the convergence rate when minimising the proposed criteria. This will 

be demonstrated in section 5. 

Third, although the case of steady state regime has been assumed (stationary signals) 

hitherto, the proposed principles are not at all limited to that specific configuration and 

apply just as well to transient responses with minor modification in the corresponding 

algorithms. This issue is not carried on here.  

Finally, it is noteworthy that the principle of least envelope happens to be more general 

than the two other ones, for it also accepts modal contributions with modulated frequency 
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as solutions. This opens interesting perspectives in all application concerned with time-

varying or non-linear systems [27][28], which are not investigated here due to lack of 

space.  

  

 

5. Experimental validations 

The three proposed principles are now demonstrated on numerical experiments 

involving both synthetic and real data. 

 

5.1. Parametric analyses 

This subsection aims at comparing, through simulations, the principles of shortest 

envelope, minimum spectral variance, and minimum spectral entropy with SOBI, a BSS 

algorithm introduced in section 2 which serves as a point of reference in OMA.  

The data are synthesised by first numerically simulating the steady state acceleration 

responses ( )i t , 1,...,i n  of n uncoupled oscillators to independent and identically 

distributed (white Gaussian noise) excitations, then mixing them with a n n  random 

(Gaussian) modal matrix Φ , and finally adding additive white Gaussian noise  tn to 

produce the system responses given by Eq. (2). 

The separation algorithms are then run with a tentative number of degrees of freedom, 

en , which may differ from the actual one, n. Care is taken to assign the same stopping rule 

to each algorithm (e.g. a fixed threshold on the relative error norm of the estimated 

separation matrix). In all experiments SOBI is first run with 2 times-lags  0,1   (which 

corresponds to the so-called AMUSE algorithm [25]) and next with 10 times-lags 

 0,...,9  . The following figures of merit are displayed: 



- 23 - 

1) the correlation coefficient, 20 1  , between the separated modal coordinates 

and the actual ones, 

2) the MAC (Modal Acceptance Criterion) between the estimated mode shapes 

(columns of separation matrix) and the actual ones, 

3) the relative energy of “cross-talk” errors 

 

 

2

1

ˆ1

ˆ( 1)

in
j

i
i j i i

e
n n  





φ φ

φ φ
 (26) 

 

where ˆ i
φ  is the i-th column of the separation matrix (12), which is ideally zero 

for perfect separation. 

 

Please note all these statistics are invariant under mode scaling, a necessary condition to 

cope with the fundamental indeterminacy of BSS. In each experiment the figures of merit 

are averaged over 100 realisations of different modal matrices, oscillator excitations, and 

additive noise. 

 

The first experiment takes m = n = ne = 4 and compares the results for increasing 

values sF   (Fs = sampling frequency) of the damping in the system (see Fig. 3). The 

signal-to-noise-ratio (SNR) is 20dB and the natural frequencies of the modal coordinates 

are 0.1Fs, 0.1587Fs, 0.2520Fs, and 0.4Fs. The second experiment takes a fixed damping 

210sF    and compares the results for increasing values of the SNR for the same 

system settings as before (see Fig. 4). The third experiment compares the results for 

increasing values of the condition number  of the modal matrix (see Fig. 5). Finally, the 

fourth experiment compares the results for increasing values of the number n of degrees of 
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freedom of the systems (m = n = ne) given n natural frequencies logarithmically spaced 

from 0.1Fs to 0.4Fs (see Fig. 6). 

 

All experiments show that the proposed least action criteria have behaviour very similar 

to SOBI with 2 time-lags: namely, separation results are all the better as damping is light 

[20], the SNR is high, and the condition number is low. The fact that separation tends to be 

more difficult in the presence of many degrees of freedom is probably to be blamed more 

on algorithmic issues than on the criteria themselves and, in that respect, the matrix 

implementation of SOBI seems slightly inferior than the deflation approach proposed here. 

It is noteworthy that SOBI with 10 time-lags evidences a slightly better performance than 

other criteria in all situations, which is consistent with the fact that, in some sense, it 

combines 9 criteria instead of one. Finally, among the proposed criteria, the principle of 

minimum spectral entropy seems to display the best performances, even though it is based 

on the same physical principle as the principle of minimum spectral variance. This is 

probably due to the use of the logarithm in its definition which can better handle large 

dynamics between modes than a linear description. However, experiments carried out in the 

next sections will not confirm the generality of this superiority. 

 

 

Figure 3: Comparison of separation results for increasing values of damping sF   with 
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SNR = 20dB and m = n = ne = 4: a) correlation coefficient, b) MAC, c) relative “cross-talk” 

error. 

 

 

 

Figure 4: Comparison of separation results for increasing values of SNR with 

210sF    and m = n = ne = 4: a) correlation coefficient, b) MAC, c) relative “cross-

talk” error. 

 

 

Figure 5: Comparison of separation results for increasing condition  numbers with 

210sF   , SNR = 20dB, and m = n = ne = 4: a) correlation coefficient, b) MAC, c) 

relative “cross-talk” error. 
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Figure 6: Comparison of separation results for increasing numbers of degrees of freedom 

n with 210sF   , SNR = 20dB, and m = n = ne = 4: a) correlation coefficient, b) MAC, 

c) relative “cross-talk” error. 

 

5.1. Example of application to synthetic data 

This subsection demonstrates the application of the proposed criteria on a simulated 15 

degree-of-freedom system purposely designed to produce complex, heavily damped, and 

strongly coupled modes -- a configuration which was demonstrated to be unfavourable to 

SOBI in Ref. [20] – as well as some local modes. The system and its corresponding mode 

shapes --are displayed in Fig. 7.  

 

(a) (b) 
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Figure 7: a) Simulated 15 degree-of-freedom system and b) corresponding mode shapes 

 

Mass, stiffness and damping values are mi = 10/386.09 kg, i = 1,...,10, mi = 0.5/386.09 kg, i 

= 11,...,15, k = 1000 N/m, c1 = c2 = 0.20 kg/s, c3 = 0.05 kg/s, respectively. The system is 

excited by white Gaussian forces and acceleration responses are collected at all m = 15 

degrees of freedom. Signals are sampled at 1

sT   1024 Hz for a total of 163840 samples. 

Figure 8 displays the power spectral densities (weighted with a 512-long Hanning window) 

of the system responses and of the modal coordinates separated by the proposed least action 

criteria. Separation with SOBI is not shown because it is qualitatively very similar to Fig. 

8(b) (see Ref. [20] for a thorough investigation of SOBI on the same example). It is seen 

that all criteria return satisfactory separation of the 15 modal coordinates, despite some 

difficulties for the principle of minimum spectral entropy to resolve between strongly 

couples modes. Figures of merit of the separation algorithms are returned in Table 1. 
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Surprisingly, the principle of minimum spectral entropy is seen to reach the lowest cross-

talk error among the proposed least action criteria although the separated spectra were not 

perfect. This is actually not contradictory, since the separated spectra reflect the estimation 

of the modal coordinates whereas the cross-talk error is indicative of the estimation of the 

mode shapes; thus very different quantities are considered. Note that these figures of merit 

are actually subjected to small random fluctuations due to random initialisation of the 

algorithm of section 3.3 and therefore are statistically very similar. However, the cross-talk 

errors of the least action criteria are, on the average, about 1.5 as large as that of SOBI 

(whether used with 2 or 10 time-lags) in this example. Finally, Fig. 9 displays the 

individual quantities 

 

 
ˆ

ˆ

i

j

ij i

i

e 
φ φ

φ φ
 (27) 

 

which reflect the closeness of the separation matrix (12) to the actual inverse 1
Φ  of the 

modal matrix ( ije  should be ideally one for i j  and zero otherwise). 
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Figure 9: Power spectra of a) the system responses and of the separated modal coordinates 

by b) SHE, c) MSV, and d) MSEnt (frequency resolution f = 2Hz). 

 

 

Table 1 

Separation 

method 

SOBI (with 10 time-

lags) 

SOBI (with 2 time-

lags) 

SHE MSV MSEnt 

Cross-talk error 0.0369 0.0389 0.0597 0.0565 0.0526 
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Figure 10: Matrices of values ˆ ˆ| | | |i i

ij j ie  φφ φφ  reflecting the closeness of the separation 

matrix to the actual inverse of the modal matrix ( ije  are ideally the elements of the identify 

matrix).   

 

 

5.1. Example of application to real data 

This last subsection illustrates the least action criteria on a set of data provided by one of 

the authors for modal parameter estimation round robin on occasion of the IMAC XXVII 

2011 conference [29]. A scaled model of a wind turbine blade (see Figure 10) was 
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considered to evaluate the performance of OMA techniques on a simple experimental 

structure. The structure was fixed at the root and excited by means of random tapping. 

Responses were measured in all three directions at 16 locations, with sampling rate of 512 

Hz, for a total of 156160 samples per channel. Figure 11 displays the power spectral 

densities (weighted with a 512-long Hanning window) of the system responses and of the 

modal coordinates separated by SOBI (with 10 time-lags) and by the proposed least action 

criteria. On the one hand, very satisfactory separation of  10 modal coordinates is achieved, 

with natural frequencies of about 13Hz, 68Hz, 112Hz, 124Hz, 149Hz, 160Hz, 181Hz, 

193Hz, 216Hz, 234Hz; on the other hand, 6 separated signals (not shown in Fig. 11) could 

easily be recognised as “numerical modes” because of non-physical features and thus were 

removed. Comparison of the criteria is difficult without point of reference and, indeed, 

seems to depend on the frequency band of interest. Finally, Fig. 12 displays the estimated 

mode shapes returned by the principle of minimum spectral variance (very similar results 

were obtained from other criteria). 
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Figure10: Scaled model of wind turbine blade 

x y 

z 
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Figure 11: Power spectra of a) the system responses and of the separated modal coordinates 

by b) SHE, c) MSV, and d) MSEnt (frequency resolution f = 1Hz). 
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Figure 12: Estimated mode shapes from MSV. 

 

 

Conclusion 

BSS was lately recognised as a potential solution to OMA. This discovery may be 

qualified as “accidental”, since algorithms initially developed in and for the field of 

(telecommunication) signal processing were then transposed and tested with some success 

to structural dynamics. This led to a number of attempts to justify a posteriori their physical 

relevance. The goal of this paper is to show that the route could have been taken the other 

way round and separation algorithms deduced from first physical principles. Three 

principles of least action have been proposed in this endeavour: the principles of shortest 

envelope, of minimum spectral variance, and of minimum spectral entropy. Extensive 

simulations have shown that the proposed criteria lead to figures of merit very similar to 
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those of SOBI, a point of reference in the current state-of-the-art. Their main advantage is 

yet conceptual rather than algorithmic; indeed, least action principles provide physical 

insight into the mechanism of BSS that other algorithms issued form the signal processing 

community may dramatically lack. No doubt that other physical properties could be 

exploited to define still new separation criteria by following the lines of the paper. Another 

perspective is to combine the proposed criteria into a single one (or to apply a criterion on 

the successive derivatives of the same signal which should preserve unchanged the 

properties of a mode) in order to improve the overall robustness. As a final remark, it is 

reminded that the results of the paper have been established under the steady-state regime 

(stationary signals), yet extension to transient regimes should be no problem. 

 

Appendix A 

This appendix introduces calculus of variation for stationary and complex-valued signals. If 

the action integral is defined as the time average  
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of a real Lagrangian * *( , , , ; )x x x x t , then Euler-Lagrange’s equation reads 

 
d

x dt x

 


 
, (29) 

 

independently of  signal x  being complex. The initial conditions 0( )x t  and 0( )x t  can be set 

arbitrary since 
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and similarly at 
0t T . The equation of motion (18) immediately follows by application of 

these results to Eq. (14). Arriving at equation (20) needs a slightly different route since 

action (20) is not associated with a Lagrangian in the form of  Eq. (28). The stationary point 

of the action is then sought by setting 

 

 
* *( , ) ( , ) ( , ) 0x x x x x x x x       , (31) 

 

where *x  and *x  are infinitesimal perturbations on the conjugate signal *x . Application 

of the above condition to action (20) yields 

 

  * 2 * 2 * * *| | | | 0a a a a a a a a a a a ai                . (32) 

 

Using integration by parts together with the same argument that led to Eq. (30), one finds 

* *

a a a a     . Therefore  

 

  * 2 * 2 * * *| | | | 0a a a a a a a a a a a ai                 . (33) 

 

The fact that this result must hold whatever the value of *x  finally proves Eq. (22). 
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Appendix B 

The aim of this appendix is to provide some methodological guidelines as how to 

implement the minimisation of the proposed criteria.  

 

B.1. Analytical signal 

All criteria have been devised with complex modal coordinate ( )a t  of which the complex 

exponential j te   is a particular solution. Physically speaking, this constrains the space of 

solutions to have positive frequencies only. This is not only convenient in the formulation 

of the criteria, but it also allows the recovery of complex mode shapes to some extent, as 

demonstrated in [7], although this is not carried on in the present paper. From an 

algorithmic point of view, the constraint is easily forced by taking the analytical versions of 

the structural responses ( )iy t , 1,...,i m , that is by zeroing the negative frequencies in 

their Fourier transforms. 

 

 B.2. Discrete time 

Although the proposed criteria have been devised in the continuous time setting, they will 

apply to discrete-time signals in practice. On the one hand, this is no problem at all for the 

frequency domain criterion (25) where the spectral matrix ( )y fS  is simply to be computed 

from the discrete Fourier transform. On the other hand, because they operate in the time-

domain, criteria (17) and (21) need a specific discretisation scheme of the derivative 

operator d dt .  Let [ ]y n  denote the discrete version of ( )y t  at time st nT  with sT  the 

sampling period. Simulations have shown that a reasonable approximation of the time 

derivative ( )a ty  in criterion (17) is returned by the simple finite difference 

 [ ] [ 1]a a sn n T y y . Criterion (21) requires more care since it has been verified that 
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higher-order schemes are necessary. In the presence work, the derivative was approximated 

by a FIR filter with 21 coefficients, 
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where 
kw  is a Hanning window. 

 

 

B.3. Gradients 

Criteria (17), (21) and (25) can be efficiently minimised with a gradient descent algorithm. 

This subsection provides the required gradient expressions assuming the modal filters are 

real-valued. Let 0
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of criteria (17) with respect to the i-th component iw  of the modal filter w  reads 
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with 
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Let us now define    *

2 , ,
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   w R w . Then, the gradient of 

criteria (21) reads 
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with 
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