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ABSTRACT

The modal analysis of a wind turbine has been generally handled with the assumption
that this structure can be accurately modeled as linear time-invariant. Such assumption
may be misleading for stability analysis, especially, with the current development of very
large wind turbines with complex dynamic behavior (nonlinearity, aeroelastic coupling).
Therefore in this paper, the inherent periodically time-varying dynamics of wind turbines
(and for rotating systems, in general) is taken into account. Recently a subspace algorithm
for modal analysis of rotating systems has been proposed. It is tested on a simulated and
real data from a wind turbine.

KEYWORDS : Modal Analysis, Wind Turbines, Stochastic Subspace Periodic Systems

INTRODUCTION

The vibration analysis is a primary task for assessing the structural integrity of wind turbines. With the
recent development of large and very large offshore wind turbines, this task is becoming increasingly
complex and very costly in money and in technical logistics. Developing new techniques that allow an
online vibration monitoring and that reduce the need to recurrent inspections and maintenance is, then,
one of the most challenging goals of wind engineering for the next years. Vibration monitoring lies
on modal analysis. When the wind turbine is assumed to be approximated by a linear time-invariant
(LTI) model, this analysis is straightforward and now well known for engineers. Wind turbines are
inherently periodically time-varying (LPTV) systems. Under isotropy assumption, these systems can
be approximated by a LTI model where the equations of motion are written in the whirling coordinate
frame. This transform is called the multi-blade coordinate transform or Coleman transform [1]. Wind
turbines are very often subject to important internal (structural properties, asymmetries) and external
(gravity load, aerodynamic effects) anisotropies. The periodic dynamics should, then, be taken into
account for an accurate characterization. The class of periodic systems is considered to be a bridge
between the time-invariant case and the time-varying one. Recently subspace algorithms for LPTV
systems have been proposed. These algorithms are applied to both a numerical model of an operating
wind turbine and some real data from a Vestas system.

1. FLOQUET THEORY

1.1 Dynamical model

A widely used mathematic representation of dynamical systems is the state space model. For a rotating
system, this model writes in continuous-time (See [2]) as follows:

ẋ(t) = A(t)x(t)+ v(t) (1a)
y(t) =C(t)x(t)+w(t) (1b)



where u(t) ∈ Rm is the input vector and y(t) ∈ Rr the output vector or the observation. The
relationship between the input and the output takes place through an intermediate variable which is
the state vector x(t) ∈ Rn. Equation (1a) is named the state equation and (1b) is the so-called output
equation or observation equation. The vectors v(t) and w(t) are noises assumed to be white Gaussian.
The number n of components in x(t) is the system order. Finally, the matrices A, C are respectively
named the dynamic matrix, the observation matrix. The periodicity of the system originates from the
periodicity of these matrices, A(t +T ) = A(t), C(t +T ) =C(t), where the smallest T for which this
periodicity is verified is the period of the system. In general, this period is equal to 2π/Ω where Ω is
the constant rotation speed of the rotor.

1.2 Floquet modal analysis

According to the Floquet theory, if A is continuous in time, or at least piecewise continuous and if an
initial condition x(t0) = x0 is fixed, then a solution of the homogeneous equation ẋ(t) = A(t)x(t) is
guaranteed to exist (See [3, 4] for further details). The main achievement of the Floquet theory is to
show that the solution matrix of ẋ(t) = A(t)x(t) can be factorized as a purely periodic matrix P(t) of
period T and a time-dependent exponential term function, such that:

Φ(t) = P(t)eRt (2)

Lyapunov has used the result above to transform Equation (1) into an equivalent autonomous system,
by introducing a new state variable:

x(t) = P(t) · z(t) (3)

Replacing the state variable x by the new variable z in Equation (1) gives:

ż(t) = Rz(t)+P−1(t)v(t) (4a)
y(t) =CP(t)z(t)+w(t) (4b)

This main result makes the modal analysis straightforward and comprehensive for periodic sys-
tems: the modal frequencies are derived from the eigenvalues of R (called Floquet exponents) and
the modeshapes are the product of the eigenvectors by the periodic matrix C̃(t) = CP(t). Let
µi = µR

i + iµ I
i = ρi + iωp,i be a Floquet exponent. Then, as in time-invariant case the damping ra-

tio and the modal frequency are defined as:
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|ωp,i|
√
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1.3 Stability analysis

The stability or the instability of the system is entirely defined by the characteristic exponents or the
damping ratios ξ . In other words, in order to analyze the stability of the periodic system (1), we have
just to compute the transition matrix over a period, namely the matrix R. We have thus:

• if all the Floquet exponents have negative real parts (resp., the damping ratios are positive),
System (1) is asymptotically stable (all the solutions converge to the null solution)
• if there exist a Floquet exponent (resp., a damping ratio) with a positive real part (resp. negative),

then System (1) is unstable (there is a solution that diverges indefinitely from the null solution)
• if some Floquet exponents (resp. damping ratios) have null real parts (resp. are null) where the

other exponents have negative real parts, then the system is in critical state called the limit of
stability or neutral stability. It can be stable or unstable.



1.4 Periodic Subspace Identification

Using the Lyapunov-Floquet transform, the fast discretization of System (1) at a sampling rate τ yields
the following periodic system with period Td = T

τ
(See [5]):

zk+1 = Fzk +Γkvk (6a)

yk = C̃kzk +wk (6b)

where Γk =
∫

τ

0 eRγdγ ·P−1
k . The purpose of the identification algorithm below is to extract the discrete

Floquet exponents, namely, the eigenvalues of F. From these eigenvalues, one can, then, compute the
frequencies and the damping ratios defined in (5).

For periodic systems, one can not mix data arbitrarily. In fact, notions like covariance or cor-
relation have just sense only when they are computed on some subsequences of data (See [6]). For
instance, the jth data subsequence is the subsequence of the outputs (y j+iTd )i.

The idea for such systems is to build Hankel matrices with correlations of same subsequences.
Consider the Hankel matrix H

( j)
p,q defined as:

Ĥ
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R( j)
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q
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where R(k)
l is defined as follows:

R(k)
l =

1
N

N−1

∑
i=0

yk+iTd yk−l+iTd (8)

As shown in [7], when N goes to infinity, R(k)
l converge to a function of the correlation of the (k− l)th

state subsequence and the (k− l)th data subsequence and of the system matrices. Replacing the R(k)
l ’s

by their expressions, the Hankel matrix writes also:

H
( j)

p,q =
1
N

N−1
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Y j+iTd
+Y j+iTd

−T (9)

When N goes to infinity, the Hankel matrix H
( j)

p,q can be factorized into the observability matrix
and the controllability matrix as in the time-invariant case:

H
( j)

p,q = O
( j)
p C

( j)
q (10)

The observability and the controllability matrices are defined this time as in citeMeyer1975:

O
( j)
p =


C̃ j

C̃ j+1F
...

C̃ j+pF j+p

 (11)

C
( j)
q =

[
FG( j−1) · · · FqG( j−q)

]
(12)

where G(k) is the state-output cross correlation of the kth invariant subsequence, when N goes to
infinity: G(k) = 1

N ∑
N−1
i=0 zk+iTd yT

k+iTd
.



1.5 Algorithm 1

Let build the Hankel Matrix, denoted H
( j+)

p,q , such that the future data are shifted from the past data
by a period Td :

H
( j+)
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1
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(13)

Since C̃k and G(k) are periodic for all k, we get the following factorization:

H
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Consider the total Hankel matrix that stacks H
( j)

p,q and H
( j+)

p,q :
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An estimate Õp,tot of the total observability matrix Op,tot can be obtained from a singular value de-
composition of the total Hankel matrix (See [7]).

1.6 Algorithm 2

In [8,9], the authors proposed a subspace-based algorithm for the extraction of the Floquet multipliers
from the computation of two successive Hankel matrices H

( j)
p,q and H

( j+1)
p,q , then a resolution of a least

squares equation. This algorithm estimates the matrix F up to two different time-varying transforms
T̂ ( j) and T̂ ( j+1), such that the output of the algorithm is related to the desired estimate as T̂ ( j+1)−1

F̂T̂ ( j).
In order to solve this problem some approximation has been made as in [10]. This approximation may
hold only for very low rotation speeds. For wind turbines, it makes sense. As a consequence, it will
yield to the estimation of the instantaneous transition matrix instead of the Floquet matrix. This matrix
is useless for stability analysis but can be useful for damage detection. In this paper, both algorithms
will be considered.

2. APPLICATION TO A WIND TURBINE MODEL

This simulation is based on materials from [11]. The Three-blade wind turbine model considered
herein is the same as in [12, 13]. This model allows to represent the coupled side-side tower and
edgewise blade response of the wind turbine. For the side-side flexibility, we represent it by rendering
it into an equivalent spring that connects the hub to the ground. The blades are represented by a rigid
body connected to the hub by means of equivalent hinges, whose characteristics in terms of offset from
the axis of rotation and stiffness are chosen so as to match the first edgewise natural frequency of the
blade. The gravity effect is taken into account. The blade stiffness varies periodically under the effects
of its own weight. These effects depend on the blade azimuthal position in its travel round the rotor
disk. The mechanical model is sketched in Figure 1. For simplicity, only one blade is represented.

The structural characteristics are reported in Table I. Figure 1 (right) shows the variation of the
real part of the system’s Floquet exponents against the rotor speed. These parameters go positive for
some speed values range; first, between 1.8 rad/s and 3.5 rad/s and second, between 6.8 rad/s and 9.7
rad/s. Since the nominal rotation speed for such large wind turbines is rather close to the first region,
the vibration monitoring will focus on the region between 1 and 2 rad/s. Using Matlab, time series
data are simulated from the mechanical model. The scenario consists in simulating a rotational speed’s
acceleration from 1,1 rad/s to 2 rad/s (close to instability) with a step of 0.1rad/s.



	   	  

Figure 1 : Scheme of the wind turbine model and Campbell diagram - real parts vs. rotor speed

Table 1 : Rotor-tower model system and main parameters

Parameter Value
Number of blades 3
Rated rotor speed 1.2 rad/s

Hinge offset 25.651
Mass of hub 7.5E+4 kg

Blade mass (movable part) 1.4482E+4 kg
Blade mass (fixed part) 1.0873E+4 kg

Blade static moment 2.7116E+5 kgm
Blade moment of inertia 7.4881E+6 kgm2
Edgewise spring damper 1.7555E+6 Nms

Tower spring stiffness 7.3116E+5 Nm-1
Tower spring damper 1.3294E+4 NSm-1

Edgewise spring stiffness 2.1192E+8 Nm
Rotor radius 75 m
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Figure 2 : Campbell diagram - real parts vs. rotor speed
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Figure 3 : Campbell diagram - imag parts vs. rotor speed

The goal will be to detect the trend to positive values: hence, to detect a change in the values of
the Floquet exponents’ real parts from their values at the reference. The number of Floquet exponents
is equal to the degrees of freedom of the wind turbine: n=4.

It is clear that the Floquet estimated modes match the theoretical values whereas the modes ob-
tained by classical SSI can be very far from the truth (See Figures 2 and 3).

3. MODAL ANALYSIS OF A IN OPERATIONAL WIND TURBINE

Figure 4 : a) Vestas V27 with blades instrumented with accelerometers; b) Location and orientation of the
accelerometers on the blades c) Location of triaxial accelerometers in the nacelle.

We demonstrate the method described above using the data collected from an operating wind
turbine during a measurement campaign, which took place from October 2012 until May 2013; the
technical details can be found in [14]. A medium size upwind horizontal axis pitch regulated Vestas
V27 wind turbine (Figure 4) was used as a test object. Each of the three blades were instrumented by
12 monoaxial accelerometers, 10 in blade’s flapwise direction and two in the edgewise direction. In
order to catch blade’s torsion, the flapwise accelerometers were mounted on both leading and trailing
edges of the blades. Thus, five measurement sections along the blade were established; the location
of the section was selected using the lowest blade mode shapes generated by FE analysis. In addition,
the rotor instrumentation included a pitch sensor and two DC accelerometers; the latter ensured the
measurement of the rotor azimuth angle. The data was collected by a 42-channels Bruel and Kjaer
LAN-Xi frontend mounted on the rotor hub, and wirelessly transferred to the nacelle. The nacelle
instrumentation consisted of three triaxial accelerometers, two located at the rear of the nacelle, and
one under the main bearing. In addition, a tachoprobe was used for measuring rotation speed of the
high-speed shaft. The rotor and nacelle data streams were synchronized using IRIG-B time stamps
extracted from GPS. Simultaneously, the weather parameters were recorded from a nearby weather
mast; this included wind speed at different heights, temperature, precipitations and other parameters.



The weather parameters were recorded averaged for every ten minutes intervals. The weather data
and the metadata extracted from the measured signals were stored in a database enabling quick search
according to different criteria and their combinations. Compared to helicopter rotors, the rotational
speed of wind turbine rotors is much lower. The rotor speed of modern wind turbines is regulated
by the wind turbine control system and depends on its design. This particular wind turbine was
mainly running in two modes: 32 and 43 RPM. For bigger multi-megawatt wind turbines the rotor
speed is much lower and might be below 10 RPM. Such low speeds might be problematic for the
presented method since it requires information from many rotor revolutions at approximately constant
speed, which might be seldom available due to constantly changing wind speed and direction. Using
the database, a longest period with almost constant rotor speed was identified: the period spans 8
hours 30 minutes, with the mean wind speed 4.6 m/s, the mean rotor speed 32.2 RPM and almost
no pitch activity. During this period, the rotor performed 16417 revolutions. Using the database
utility, the continuous time histories spanning the entire period were extracted, decimated down to
102.4Hz sampling frequency and used as an input for the analysis. Additional details regarding the
measurement setup can be found in [14, 15].

It has already been shown in [7], that the classical SSI is theoretically wrong when applied to
LPTV data. The objective of this experimentation is to qualitatively evaluate if the error is significant
when the rotor blade speed is low.

Figure 5 : SSI vs LPTV : short sequence of data

The short sequence data is as such, 12 sensors, a sampling frequency of 200HZ and a rotational
frequency of 0.5369Hz for 240000 samples. This is long enough to process a classical SSI but notice
that the quality of the LPTV algorithm is related to the number of periods which is very low, around
650. The performance to be expected for the LPTV algorithm on a LPTV system is the same as the
classical SSI applied on a LTI system with 650 samples.

Figure 6 : SSI vs LPTV : long sequence of data

The long sequence is using only six sensors, at 102.4Hz and at a rotating speed of 0.536501Hz.
Now, the number of periods for the periodic algorithm is 16K and the algorithm has enough data to



get stable results. As a matter of fact, both the classical and the periodic SSI achieve similar results
stressing that the periodic behavior at that speed is not prevalent. Still the periodic SSI is the only one
to be guaranteed to be correct. Both algorithms exhibit the correct modes at 3.51HZ and 358Hz as
explained in [14, 15].

CONCLUSION

LPTV subspace identification has been investigated for both a simulated and real data from a wind
blade systems. Two algorithms were considered. The first one yields Floquet modes of a rotating
structure at any given speed. Floquet modes are important because they are symptoms of instability
and are thus quantities to monitor in a SHM system. It has been shown that Floquet modes can be sig-
nificantly different from the modes given by the classical SSI. Another LPTV algorithm is considered.
It is shown that at low speed, this algorithm gives similar modes to the classical SSI for that given ex-
ample. Structural modes can be interesting for assessing damage. There are nonetheless no guarantee
that for another example, classical SSI will yield to exploitable results. Still, when the anisotropy of
the system is low, a LTI approach can be considered as a rough approximation of the LPTV behavior.
Further work will focus on Floquet modes monitoring and computation of uncertainty bounds.
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