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It is well-known that when a single-degree-of-freedom (sdof) system is excited by a
continuous motion of the foundation, the force transmissibility, relating the force transmitted
to the foundation to the applied force, equals the displacement transmissibility. Recent
developments in the generalization of the transmissibility to multiple-degree-of-freedom

transmissibility do not appear naturally from the definitions, as happens in the sdof case.
In this paper, the authors present their studies on the conditions under which it is possible

to establish a relation between force transmissibility and displacement transmissibility for
mdof systems. As far as the authors are aware, such a relation is not currently found in the
literature, which is justified by being based on recent developments in the transmissibility
concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that
the needed link is present when the displacement transmissibility is obtained between the
same coordinates where the applied and reaction forces are considered in the force
transmissibility case; this implies that the boundary conditions are not exactly the same
and instead follow some rules.

This work presents a formal derivation of the explicit relation between the force and
displacement transmissibilities for mdof systems, and discusses its potential and limitations.
The authors show that it is possible to obtain the displacement transmissibility frommeasured
forces, and the force transmissibility frommeasured displacements, opening new perspectives,
for example, in the identification of applied or transmitted forces. With this novel relation, it
becomes possible, for example, to estimate the force transmissibility matrix with the structure
off its supports, in free boundary conditions, and without measuring the forces. As far as force
identification is concerned, this novel approach significantly decreases the computational
effort when compared to conventional approaches, as it requires only local information of the
sets of coordinates involved. Numerical simulations and experimental examples are presented
and discussed, to illustrate the proposed developments.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The displacement transmissibility in an sdof system is defined as the ratio between the amplitude of the response
displacement and the amplitude of the displacement imposed at the foundation (e.g., [1]). Similarly, the dynamic
transmissibility of forces is defined as the ratio between the amplitude of the force transmitted to the ground and the
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amplitude of the excitation force. In the sdof case, the conclusion is that the transmissibility expressions for both
displacement and force are identical.

Although sdof models can be applied to a variety of vibration problems, in many situations the need for higher-order
models is evident. However, from its nature and as explained in [2], transmissibility expressions for both force and
displacement are not identical for mdof systems. Until now, no answer to the problem of relating these force and
displacement mdof transmissibilities has been published, as far as the authors are aware. This fact has motivated the authors
to develop their efforts and establish such a relationship.

Before going into the subject of relating displacement and force transmissibility, one must go back a little in time. The
problem of extending the idea of displacement transmissibility to an mdof system is essentially the question of how to relate
a set of unknown responses to a set of known responses, for a given set of applied forces. On the other hand, extending the
idea of force transmissibility to an mdof system is essentially a problem of how to relate a set of reaction forces to a set of
applied ones. Some initial attempts are due to Snowdon [3], Vakakis et al. [4–6], Liu et al. [7,8], Varoto et al. [9], and Sciulli
et al. [10]. Similar efforts can also be found in the indirect measurement of vibration excitation forces [11–15]. A more
general approach has been pursued since the late 1990s [16–19] for the displacement transmissibility as well as for the force
transmissibility [20].

Various applications of transmissibility approach may now be found, such as structural response estimation [21], damage
detection [22,23], operational modal analysis [24], evaluation of unmeasured frequency response functions (FRFs) [25,26],
and force identification [27,28]. Another example is the problem of transfer-path analysis in vibroacoustics, where classical
techniques based on measured transfer functions and estimated source strengths may often be time consuming and error
prone. Tcherniak et al. [29–31] sought easier and more reliable ways to address those types of problem through the use of
the transmissibility matrix extracted from operating measurements and therefore not requiring the measurement of
transfer functions.

A review of the multiple applications of the transmissibility concept has been published recently in [2]. The presented
concept significantly decreases the computational effort when compared to conventional approaches as it requires only
local information of the sets of coordinates involved.

The definition of a relation between force and displacement transmissibilities is the objective of this article and its main
novelty. In this article, the authors propose a potentially useful application of this new definition: to estimate the force
transmissibility without requiring the structure to be in its operational conditions. Instead, the force transmissibility is
obtained from the displacement transmissibility, with the structure in free boundary conditions.

In Sections 2.1 and 2.2, the authors briefly review the theoretical development of the mdof force transmissibility and of
the mdof displacement transmissibility, proposed in [18,20]. In Section 3, it is observed that a relationship between them is
possible, although subject to some restrictions. The authors have developed and implemented numerical and experimental
tests, which are described in Section 4 and illustrated in Section 5, through the presentation of several examples to assess
and validate the proposed relationship and methodologies.

2. Transmissibility concepts in mdof systems

In the next two sub-sections, the main definitions of the generalized transmissibility concepts are revisited.

2.1. Force transmissibility in mdof systems

For the introduction to the generalized force transmissibility, the definition of some sets of coordinates is essential. Let us
assume that (i) K is a set defined by the coordinates where the external forces are applied, (ii) U is a set defined by the
coordinates where the reaction forces appear due to displacement constraints at the supports, and finally (iii) all the
Fig. 1. Illustration of the sets of coordinates K, U and C.
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remaining coordinates constitute the set C. Note that in spite of the fact that here all the forces are known, the notation U
that was introduced for “unknown” in [20] is kept for the coordinates associated to the given displacement boundary
conditions. In that context, K stands for “known”. A schematic illustration of the different kind of coordinates is presented in
Fig. 1.

The receptance frequency response matrix H relates, in steady-state conditions, the dynamic displacement amplitudes Y
with the external force amplitudes F. This matrix corresponds to the body free in space (i.e., with all restrictions in subset U
removed). The displacement responses Y at the discretized nodes of the structure (associated to the previously introduced
sets K, U and C) may be defined as in the following expression:

YK

YU

YC

8><
>:

9>=
>;¼

HKK HKU

HUK HUU

HCK HCU

2
64

3
75 FK

FU

( )
(1)

Supposing that at the set U the supports totally constraint the displacements, one may impose YU¼0; thus,

HUK FK þHUU FU ¼ 0 (2)

from which,

FU ¼ Tðf Þ
UKFK (3)

where

Tðf Þ
UK ¼ �ðHUUÞ�1HUK (4)

is the force transmissibility between the sets U and K. The upper index (f) denotes force transmissibility.
The inverse relation, i.e., between the sets U and K, also results from expression (2) and is given by

FK ¼ ðTðf Þ
UK ÞþFU (5)

where ðTðf Þ
UK Þþ is the pseudo-inverse of Tðf Þ

UK :

ðTðf Þ
UK Þþ ¼ �ðHUK ÞþHUU (6)

While in the transmissibility of forces between U and K, in Eq. (4), one has the inversion of a square matrix, in the inverse
relation in Eq. (6), a pseudo-inversion (in general) is required, where #U the number of coordinates in U has to be greater or
equal to the number of coordinates #K of K.

A generalization to the case of elastic supports is considered in the next lines.
When non-zero support displacements are involved, i.e., YUa0, one can write the following relation (from Eq. (1)):

FU ¼ ðHUUÞ�1ðYU�HUK FK Þ (7)

Considering Eq. (4), one obtains

FU ¼ Tðf Þ
UKFK þðHUUÞ�1YU (8)

For the sake of simplicity, the present article is limited to the case of rigid supports.

2.2. Displacement transmissibility in mdof systems

For the introduction of the generalized displacement transmissibility, the definition of some sets of coordinates is also
essential. Keeping the designations introduced in [18], let us assume that (i) K is defined as the set of coordinates where the
responses Y are known, (ii) U is defined as the set of coordinates where the responses Y are unknown, (iii) A is defined as the
set of coordinates where forces F are applied and (iv) all other coordinates of the elastic body discretization constitute the
set C. A schematic illustration of this is presented in Fig. 2.

With these sets, one may relate the responses with the excitation forces in all coordinates by the following expression:

YA
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>>>:

9>>>=
>>>;

¼
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2
66664

3
77775fFAg (9)

To analyze the displacement transmissibility, one is interested in the case where the structure is considered free of its
supports. This means that in the model for displacement transmissibility no coordinates have supports where reactions can
develop. Due to this, the only non-zero forces are in the set A.

Based on harmonically applied forces at coordinates A, one may establish that displacements at coordinates U and K are
related to the applied forces at coordinates A by the following relationships:

YU ¼HUAFA (10)
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YK ¼HKAFA (11)

Eliminating the external forces FA between (10) and (11), one obtains

YU ¼ TðdÞ
UKYK (12)

where

TðdÞ
UK ¼HUAðHKAÞþ (13)

is the transmissibility matrix relating both sets of displacements. ðHKAÞþ is the pseudo-inverse of the sub-matrix HKA. One
important aspect behind this definition is that sub-matrices HUA and HKA may be obtained experimentally. The upper index
(d) denotes displacement transmissibility, which is implicitly related to the set A.

Note that relation (13) depends not only on the set of coordinates U and K, but also on the set A. Obviously, an inverse
relation can also be obtained for TðdÞ

UK from expressions (10) and (11).

3. Relation between force and displacement transmissibilities

Start by recalling the displacement transmissibility given by Eq. (13), with the structure in free boundary conditions as in
Fig. 2. Since there are no restrictions on how the set A is constructed, one may assume that sets A and U coincide, i.e., one can
relate YU and YK when the applied forces act at the coordinates U. In such a situation, the displacement transmissibility
becomes:

TðdÞ
UK ¼HUUðHKUÞþ (14)

Now, recalling the force transmissibility given by Eq. (4), one can relate Eqs. (4) and (14). The pseudo-inverse of Eq. (14) is

ðTðdÞ
UK Þþ ¼HKU ðHUUÞ�1 (15)

Multiplying (15) by –1 and transposing, yields

�ððTðdÞ
UK Þþ ÞT ¼ �ðHUUÞ�1HUK (16)

Comparing Eqs. (16) and (4), it follows that

Tðf Þ
UK ¼ �ððTðdÞ

UK Þþ ÞT (17)

where #UZ#K . Conversely, one may establish the following:

TðdÞ
UK ¼ �ððTðf Þ

UK ÞTÞþ (18)

where #KZ#U.
Eq. (17) allows us to obtain the force transmissibility between two sets of coordinates (the set U, associated with the

supports of the structure where the reactions appear, and the set K, associated with the points where the external loads are
applied) from the displacement transmissibility between the same two sets of coordinates (although in this case the
measurements are taken with the structure free in space).

One can observe that Eqs. (17) and (18) present some limitations for the direct application, but the great advantage of
those relations and their possible applications come from the fact that it is possible to obtain the force transmissibility for
the mdof case without measuring forces; in fact, they only require the measurement of displacements.
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It should also be noted that, whenever possible, the transmissibility matrices should be calculated from the measured
receptance FRFs (Eqs. (4) and (13)), taking into account the limitations of each formulation.

3.1. Verification for the sdof case

It seems appropriate to verify expressions (17) and (18) for the sdof case. Let us consider the sdof system illustrated in
Fig. 3. The transmissibility of forces is defined as the ratio between the amplitudes of the transmitted and the applied forces,
and it is well-known from any mechanical vibration text book that the result is given by

T ðf Þ
UK ¼ FU

FK
¼ kþ iωc
k�ω2mþ iωc

(19)

where ω is the excitation frequency, k represents the constant stiffness, m the constant mass and c the damping coefficient
of an ideal massless viscous damper, or, simply, by its amplitude:

T ðf Þ
UK ¼ FU

FK
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðωcÞ2

ðk�ω2mÞ2þðωcÞ2

s
(20)

In order to verify expressions (4) and (14), one must refer to Fig. 4, which represents the system of Fig. 3, but free in
space. One defines the displacement transmissibility by relating the amplitude of the response, (YK ), to the imposed
displacement amplitude at the base, (YU).

The dynamic equilibrium equations for the free vibration case of Fig. 4 are given by the following expressions:

m€yKþcð_yK � _yU ÞþkðyK�yUÞ ¼ 0
cð_yU� _yK ÞþkðyU�yK Þ ¼ 0 (21)

As yU ¼ YUeiωt and yK ¼ YKeiωt , Eq. (21) become:

k�ω2mþ iωc �k� iωc
�k� iωc kþ iωc

" #
YK

YU

( )
¼ 0

0

� �
(22)
Fig. 3. Applied and transmitted forces in the sdof case.

Fig. 4. The system of Fig. 3, here set free in space.
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To verify Eq. (14), one needs to define the FRFs HUU and HKU. HUU is equal to YU when a harmonic force of unitary
magnitude is applied at coordinate U and no force is applied at coordinate K. Therefore, from Eq. (21),

YK

YU

( )
¼ k�ω2mþ iωc �k� iωc

�k� iωc kþ iωc

" #�1
0
1

� �
(23)

Thus,

HUU ¼ YU ¼ k�ω2mþ iωc
�ω2mðkþ iωcÞ (24)

Likewise, HKU is equal to YK when a harmonic force of unitary magnitude is applied at coordinate U and no force is
applied at coordinate K. Therefore, Eq. (23) leads to

HKU ¼ YK ¼ 1
�ω2m

(25)

Applying Eq. (14) leads to

T ðdÞ
UK ¼HUUðHKUÞþ ¼ YU

YK
¼ k�ω2mþ iωc

ðkþ iωcÞ (26)

Using Eq. (17), it follows that

T ðf Þ
UK ¼ � kþ iωc

k�ω2mþ iωc
(27)

This expression is identical to Eq. (19) except for the minus sign; this is due to the fact that in literature the force
transmissibility for the sdof system is normally calculated considering the transmitted force (as shown in Fig. 3) and Eq. (19).
However, this study uses the opposite force, i.e., the reaction force, as considered in this paper (see Fig. 1). In any case, the
result in terms of modulus amplitudes is obviously the same.

One should also note that, for the sdof case, what is usually defined as displacement transmissibility is the ratio between
the amplitude of the response (YK ) to the imposed displacement amplitude at the base, (YU), i.e., the inverse of Eq. (26).

These considerations explain why, in the case of an sdof system, both displacement and force transmissibilities coincide.
3.2. Limitations of the transmissibility relations

As mentioned in the previous section, the existence of these relations and possible direct application are limited by the
dimension of the sets of coordinates U and K. Let us analyze these limitations in each case, assuming that the transmissibility
matrices are experimentally measured.

Case 1: #K¼#U
It is the ideal case; it is possible to measure both transmissibilities experimentally and it is possible to apply relations (17)
and (18) directly.
Case 2: #K4#U
It is possible to measure the force transmissibility, and one can directly apply relation (18) to obtain the displacement
transmissibility from the force transmissibility. It is also possible to measure the displacement transmissibility; however,
the opposite relation (17) cannot be applied using this matrix because the inverse of the displacement transmissibility
matrix cannot be calculated when #KZ#U. Anyway, it is still possible to measure the inverse of the displacement
transmissibility experimentally and thus estimate the force transmissibility by Eq. (17). The procedure to measure the
displacement transmissibility and its inverse will be explained in Section 5.3 of this study and also can be found in
Reference [2].
Case 3: #Ko#U
It is not possible to apply Eq. (18) directly due to the inverse of the force transmissibility matrix; in this case one needs to
use more coordinates for the applied forces K, which can be accomplished by introducing the concept of fictitious forces,
as will be explained in Section 3.2.1.
Eq. (17) shows that it is possible to obtain the force transmissibility from the displacement transmissibility, but one may
find some difficulties in obtaining the displacement transmissibility matrix, because it does not fulfill the criterion imposed
by the displacement transmissibility #KZ#U (Eq. (14)). A possible solution consists of adding fictitious coordinates K to
obtain #K¼#U. That will not change the transmissibility values, because they represent null forces on the force
transmissibility, as will be explained in Section 3.2.1. If there is no interest to know the displacement transmissibility it
is also possible to measure its inverse and use it directly in relation (17).
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3.2.1. Fictitious coordinates and fictitious forces
One important point mentioned above that can help the implementation of the transmissibility relationships is the

addition of coordinates K to the system. This will not change the results obtained by the transmissibilities, since one must
not forget that the solution of our problem is just a sub-matrix of the resulting matrix. This can facilitate the measurement
of the displacement transmissibility, fulfilling the criterion required for this. The added coordinates, described as “fictitious”,
are associated to the dynamic responses at the set K of displacement transmissibility and to the forces at the set K of the
force transmissibility.

Let us assume the following example: a dynamic system with three support points (null displacements), which results in
three reactions, and with an external applied force, as illustrated in Fig. 5.

The force transmissibility and the associated coordinates are

F1
F2
F3

8><
>:

9>=
>;¼

T ðf Þ
1;4

T ðf Þ
2;4

T ðf Þ
3;4

2
6664

3
7775fF4g with FU ¼ fF1; F2; F3g and FK ¼ fF4g (28)

To establish the relation between transmissibilities, the displacement transmissibility assumes the configuration shown
in Fig. 6 and is given by

Y1

Y2

Y3

8><
>:

9>=
>;¼

T ðdÞ
1;4

T ðdÞ
2;4

T ðdÞ
3;4

2
6664

3
7775fY4g with FA ¼ FU ¼ fF1; F2; F3g; YU ¼ fY1;Y2;Y3g and YK ¼ fY4g (29)
Fig. 5. Force transmissibility configuration.

Fig. 6. Displacement transmissibility configuration.
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As in the case of Fig. 6, one has #Ko#U, and the displacement transmissibility cannot be calculated from Eq. (18); the
idea is to add coordinates to the set K, such that #K¼#U. Adding coordinates 5 and 6 to this example, as illustrated in Fig. 7,
the displacement transmissibility is now given by

Y1

Y2

Y3

8><
>:

9>=
>;¼

T ðdÞ
1;4 T ðdÞ

1;5 T ðdÞ
1;6

T ðdÞ
2;4 T ðdÞ

2;5 T ðdÞ
2;6

T ðdÞ
3;4 T ðdÞ

3;5 T ðdÞ
3;6

2
6664

3
7775

Y4

Y5

Y6

8><
>:

9>=
>; (30)

Now, from Eq. (17) one obtains the force transmissibility with two additional forces, K, which are designated as fictitious,
because they are null. The force transmissibility is defined as

F1
F2
F3

8><
>:

9>=
>;¼ ððTðdÞ

UK Þþ ÞT
F4

F5 ¼ 0
F6 ¼ 0

8><
>:

9>=
>; (31)

The coordinates corresponding to the fictitious forces are required to calculate the displacement transmissibility matrix,
as will be seen in numerical and experimental examples. If there are no advantages in knowing the displacement
transmissibility, one can directly obtain its inverse (inverse of Eq. (14)), and the addition of K coordinates is not necessary.
Using the inverse matrix of the displacement transmissibility in Eq. (31) it follows that

F1
F2
F3

8><
>:

9>=
>;¼

H4;1 H4;2 H4;3

ðH5;1Þ ðH5;2Þ ðH5;3Þ
ðH6;1Þ ðH6;2Þ ðH6;3Þ

2
64

3
75

H1;1 H1;2 H1;3

H2;1 H2;2 H2;3

H3;1 H3;2 H3;3

2
64

3
75

�10
BB@

1
CCA

T
F4
0
0

8><
>:

9>=
>; (32)

where the “( )” in the matrix entries means that those entries are not necessary, i.e.,

F1
F2
F3

8><
>:

9>=
>;¼

H1;1 H1;2 H1;3

H2;1 H2;2 H2;3

H3;1 H3;2 H3;3

2
64

3
75

�1 H4;1

H4;2

H4;3

2
64

3
75F4 (33)

The multiplication of the receptance matrix in (32) reveals that the addition of coordinates K for the displacement
transmissibility matrix does not change the sub-matrix relating the forces (when applying Eq. (17)), because each column of
the final matrix only depends on a single coordinate K. A similar conclusion can be drawn for additional fictitious forces –

each column of the force transmissibility matrix is dependent on only one force. In practice, the force transmissibility can be
measured column by column, applying the forces of set K independently.

Summarizing, using the deductions presented before, and fulfilling the necessary requirements, one can use Eqs. (17) and
(18) as follows:
i)
Please cite th
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when the displacements at the coordinates of the reactions are equal to zero (YU¼0), one can write:
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Fig. 7. Displacement transmissibility configuration with additional coordinates K.
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and

YU ¼ �ððTðf Þ
UK ÞTÞþYK (35)
ii)
 when the displacements at the coordinates of the reactions are not zero (YUa0), one can write:

FU ¼ �ððTðdÞ
UK Þþ ÞTFK þðHUUÞ�1YU (36)
4. Numerical simulations

In this section, the authors present the methodologies used to test the proposed transmissibility relationships from the
numerical point of view. These methodologies are here applied to simple beams.

4.1. Numerical models

To obtain the transmissibility needed in numerical simulation, one may consider the simulated FRF constituting the
receptance matrix H. The receptance frequency response matrix H relates the dynamic displacement amplitudes Y with the
external force amplitudes F as (using harmonic excitation, in steady-state conditions):

Y¼HF3Y¼ ðK�ω2Mþ iωCÞ�1F (37)

where K, M and C represent the stiffness, mass and proportional damping matrices, respectively, where C¼α Kþβ M, and
α and β are constants evaluated experimentally. H includes all the coordinates (degrees of freedom of the numerical model) in
which the system is discretized and corresponds to the inverse of the dynamic stiffness matrix Z. Using (37), it is possible to obtain
the FRFs; however, due to the inverse calculation being done for each frequency, the computational cost is fairly high. Instead, one
shall use the FRFs written in terms of the modal properties. Taking into account the orthogonality properties, it follows that

ΦTMΦ¼ I

ΦTKΦ¼ diagðω2
r Þ

ΦTCΦ¼ diagð2ξrωrÞ (38)

where ωr is the rth natural frequency, ξr is the rth damping factor and Φ is the mass-normalized mode shape matrix. Then one
obtains:

Y¼HF3Y¼Φðdiagðω2
r �ω2þ i2ξrωrωÞÞ�1ΦTF (39)

In this way, one only needs to compute the inverse of a diagonal matrix. A computer program was developed (in
MatLabs environment) to build the stiffness, mass and damping matrices, using the finite element method, and to perform
the needed FRFs using (39).

4.2. Transmissibilities in terms of numerical simulations

As explained in the previous subsection, although the receptance matrix H is the inverse of the corresponding dynamic
stiffness matrix, one should avoid such frequency by frequency direct numerical inversion. Instead, H is calculated as in
Eq. (39), to avoid a high computational cost.

To verify Eq. (17), a finite element model has been chosen according to the theory considered for the structure
discretization. For example, in the case of reasonably long and slender beams, one can use the standard two-node Bernoulli-
Euler bidimensional beam element. With it, and as the analysis and the model are limited to the plane xOy (see Fig. 8), each
node has three degrees of freedom (ux, uy, θ). Hence, the matrices of the numerical model have an order of 3�N for the free–
free beam, where N is the total number of nodes.
g. 8. Beam used for the force transmissibility example, with a transversal force at node 7 and reactions at nodes 1 and 17.
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Fig. 9. Structural models after imposing the criterion #K¼#U.
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As far as the simulations are concerned, only the displacements and applied forces along the Oy direction are used and
therefore the numbering of nodes coincides with the number of coordinates y.

To confirm numerically the relationships obtained in Eqs. (17) and (18), the following model is proposed: a beam simply
supported at both ends is subjected to a transverse force somewhere along the beam axis. For the sake of simplicity, one
considers the beam discretized in sixteen finite elements with supports at nodes 1 and 17, and a transverse dynamic force
applied at node 7, as illustrated in Fig. 8.

The sets involved are FU ¼ fF1 F17g and FK ¼ fF7g, related through the force transmissibility:

F1
F17

( )
¼ �

H1;1 H1;17

H17;1 H17;17

" #�1 H1;7

H17;7

" #
fF7g3

F1
F17

( )
¼

T ðf Þ
1;7

T ðf Þ
17;7

2
4

3
5fF7g: (40)

The force transmissibility matrix can be determined using the receptance matrix or by the ratio between the simulated
reactions and the applied forces. Now, the objective is to obtain the same relation between the forces but using the
displacement transmissibility concept.

According to the description given in Section 3, it is not possible to relate the force transmissibility directly to the
displacement transmissibility, as in Eq. (17) using the setup presented in Fig. 8, because #Ko#U, and therefore the
displacement transmissibility cannot be calculated. As explained before, if one does not need to know the displacement
transmissibility matrix, it is possible to apply Eq. (17) using the inverse of the displacement transmissibility matrix directly.
Assuming, in this case, that one would like to know the displacement transmissibility, one may add new coordinates to
ensure that #K¼#U, i.e., to add a fictitious coordinate to the displacement transmissibility matrix, which corresponds to a
fictitious force in the force transmissibility matrix.

For example, let us chose coordinate 9 as the fictitious one. Considering the models illustrated in Fig. 9, the following sets
of coordinates will be required for the displacement and force transmissibility, respectively:

TðdÞ-YU ¼ fY1 Y17g;YK ¼ fY7 Y9g and FA ¼ FU ¼ fF1 F17g (41)

Tðf Þ-FU ¼ fF1 F17g and FK ¼ fF7 F9g with F9 ¼ 0 (42)

The transmissibility matrices are then defined by

F1
F17

( )
¼ �

H1;1 H1;17

H17;1 H17;17

" #�1 H1;7 H1;9

H17;7 H17;9

" #
F7
F9

( )
3

F1
F17

( )
¼

T ðf Þ
1;7 T ðf Þ

1;9

T ðf Þ
17;7 T ðf Þ

17;9

2
4

3
5 F7

F9

( )
(43)

Y1

Y17

( )
¼

H1;1 H1;17

H17;1 H17;17

" #
H7;1 H7;17

H9;1 H9;17

" #�1
Y7

Y9

( )
3

Y1

Y17

( )
¼

T ðdÞ
1;7 T ðdÞ

1;9

T ðdÞ
17;7 T ðdÞ

17;9

2
4

3
5 Y7

Y9

( )
(44)

With this, it is possible to obtain both transmissibilities, as well as the relationships between them. The purpose of this is
to illustrate how to calculate the transmissibilities using the numerical model (receptances) for a free–free beam, and
numerically confirm relationships (17) and (18).

Here we have presented the relations between transmissibilities using the receptance, which may not be the most
interesting example, as any of the transmissibilities can be calculated directly. The methodology using only the dynamic
responses of the structure is more interesting and focuses on the main purpose of this article, i.e., the possibility of knowing
a relationship between forces only from the measurement of displacements, as will be explained in Section 5.3.

4.3. Numerical results

The properties of the beam are presented in Table 1.
In order to confirm relationship (17) numerically, the several entries of the force transmissibility matrix are obtained

directly from the numerical FRFs of the beam (Eq. (43)) and then compared with the force transmissibility matrix obtained
through the application of Eq. (17) to the displacement transmissibility matrix (here also obtained directly from the FRFs).
As can be seen from Fig. 10, both curves are coincident.
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Table 1
Beam properties.

Young's modulus – E 208 GPa
Density – ρ 7840 kg/m3

Length – L 0.8 m
Section width – b 5.0�10�3 m
Section height – h 20.0�10�3 m
Second moment of area – Izz 2.0833�10�10 m4
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Fig. 10. Comparison of results obtained numerically for the transmissibility by (21,37,38): (a) T1,7; (b) T1,9; (c) T17,7; and (d) T17,9.
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5. Experimental tests

In this section, the authors present the methodologies used to test the proposed transmissibility relationships from the
experimental point of view, applied once again to simple beams.

5.1. Transmissibilities in terms of experimental measurements

Concerning the force transmissibility and assuming a general case with multiple applied forces and multiple reactions,
the experimental measurement of the elements of its matrix is considered simple. In this case, one can measure the
elements of the force transmissibility matrix, column by column, individually applying each input corresponding to the
respective column. This is possible since each column of the force transmissibility depends only on a single input (Eq. (4)).

Direct measurement of the displacement transmissibility matrix is not straightforward. A detailed description of the
indirect procedure applied in this study is given in Section 5.3.

For the experimental tests, a steel beam with rectangular cross-section (the properties presented in Table 1) was chosen.
All measurements were conducted only in the y-direction; the structure is in a free–free configuration for the displacement
transmissibility study and is simply supported at two points for the force transmissibility study. Once again, the main
objective is to test and validate relationships (17) and (18).

5.2. Force transmissibility measurement

Fig. 11 presents a schematic representation of the experimental setup used for the force transmissibility tests. The simply
supported beam has a single applied force, so the chosen sets of forces are FU ¼ fF1 F17g and FK ¼ fF7g. The supports of the
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Fig. 11. (a) Nylon support used to support the beam at its ends and (b) experimental setup for the transmissibility of forces with positions of the force
transducers.
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beam are simulated by small, wide-flanged shapes (built of nylon) shown in Fig. 11, preventing vertical displacements of the
ends while allowing free rotation along the Oz axis. The excitation signal used was a multi-sine transmitted to the exciter,
with constant amplitude in frequency. In reality, the signals measured by the force transducer vary in amplitude with the
frequency, as it also depends on the dynamic response of the structure.

The transmissibility matrix relates the transverse applied force with the reactions:

F1
F17

( )
¼

T ðf Þ
1;7

T ðf Þ
17;7

2
4

3
5fF7g (45)
5.3. Displacement transmissibility measurement

To determine the displacement transmissibility and apply Eq. (17) one needs to meet the criterion #K¼#U. For that, it is
necessary to add a fictitious coordinate to the set of coordinate's responses, as explained before. Similarly to the numerical
case, the setup is as illustrated in Fig. 12 with the following sets of coordinates: YU ¼ fY1 Y17g, YK ¼ fY7 Y9g and
FA ¼ FU ¼ fF1 F17g.

Y1

Y17

( )
¼

T ðdÞ
1;7 T ðdÞ

1;9

T ðdÞ
17;7 T ðdÞ

17;9

2
4

3
5 Y7

Y9

( )
(46)

Thus, the results obtained should enable one to test the proposed relationship (17):

Tðf Þ ¼ �ððT ðdÞÞþ ÞT3
F1
F17

( )
¼ ððTðdÞ

UK Þþ ÞT
F7

F9 ¼ 0

( )
(47)

where the force transmissibility corresponds to the first column of the matrix obtained by this relationship while the other
column corresponds to the related fictitious force at the added coordinate.

To measure the respective displacement transmissibility matrix and to avoid measuring the forces (i.e., no force
transducers) one can use several operating measurements, like the one proposed in [2,30].

Note that the displacement transmissibility matrix can be obtained by exciting the structure for each force input
individually. For each applied force of the vector FU, one obtains the responses at subset U½fY1

ð1Þ:::YU
ð1ÞgT…fY1

ðUÞ:::YU
ðUÞgT�

and they are related to responses measured at subset K ½fY1
ð1Þ:::YK

ð1ÞgT…fY1
ðUÞ:::YK

ðUÞgT� via the transmissibility matrix (which
does not depend on loading but depends on the structure of the problem). These measurements can be combined into one
matrix:

½fYUgð1Þ…fYUgðUÞ� ¼ ½T ðdÞ
UK �½fYKgð1Þ…fYKgðUÞ�: (48)

and T(d) can be obtained as

½T ðdÞ
UK � ¼ ½fYUgð1Þ…fYUgðUÞ�½fYKgð1Þ…fYKgðUÞ��1 (49)

The transmissibility matrix can then be obtained from this result and the settings necessary to test it in the laboratory are
the ones illustrated in Fig. 13.
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Fig. 12. Accelerometers and force positions for the displacement transmissibility with the additional coordinate Y9 (suspended by nylon wires).

Fig. 13. Setups used for calculation of T(d): on the left scheme the force transducer is at coordinate 1, while on the right scheme the transducer is at
coordinate 17.
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With the setups illustrated in Fig. 13 one can obtain the displacement transmissibility matrix as follows:

TðdÞ
UK ¼

T ðdÞ
1;7 T ðdÞ

1;9

T ðdÞ
17;7 T ðdÞ

17;9

2
4

3
5¼

Y1
1 Y17

1

Y1
17 Y17

17

" #
Y1
7 Y17

7

Y1
9 Y17

9

" #�1

(50)

This technique avoids the measurement of the amplitude of forces; it only requires the dynamic responses and uses of
one vibration exciter.

Note that, as explained before, it is also possible to apply Eq. (17) without the knowledge of the displacement
transmissibility matrix. In that case, one needs to obtain the inverse of the displacement transmissibility matrix (13)
directly, needing no additional fictitious coordinates:

ðTðdÞ
UK Þþ ¼ Y1

7 Y17
7

h i Y1
1 Y17

1

Y1
17 Y17

17

" #�1

(51)

5.4. Experimental results

Here we present the displacement transmissibility matrix obtained using the setup shown in Fig. 13 and the components
calculated using Eq. (50). The results are in the plots shown in Fig. 14a–d.

After obtaining the displacement transmissibility, one can obtain the required force transmissibility using Eq. (17), where
the elements of the first column of the matrix correspond to the elements of the force transmissibility matrix measured
experimentally. Of course, the force at coordinate 9 is a fictitious force, i.e., equal to zero. The plots in Fig. 15 show the two
elements of the force transmissibility matrix and those obtained by the displacement transmissibility applying Eq. (17).

The curves obtained in both ways coincide reasonably well, although there are some discrepancies due to the
experimental nature of the procedure used to obtain the displacement transmissibility. As can be seen in the displacement
transmissibilities presented in Fig. 14, some small peaks appear, caused by the fact that in both measurement tests
illustrated in Fig. 12 the mass of the force transducer has not been canceled out and therefore the resonant frequencies of
the structure from those measurements were not exactly coincident.

Additional measurements also confirmed that the referred peaks of Fig. 14 were not due to effects of the degrees of
freedom that have not been taken into account – namely transverse vibrations along another axis, torsional vibrations, etc.

From Fig. 15, one can also conclude that the adopted setup for the simple supported beam has proven to be acceptable,
due to the good results that were obtained, although the nylon supports have introduced damping into the system.
Moreover, the assumption of null displacements at the coordinates of the supports was also confirmed experimentally.
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Fig. 14. Components of the displacement transmissibility matrix: (a) T(d)1,7, (b) T(d)1,9, (c) T(d)17,7, and (d) T(d)17,9 calculated from the experimental responses.
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With these examples, the authors consider that the main purpose of showing the effectiveness of the proposed relation
has been achieved.
6. Conclusions

In this work, the authors derive and validate a relationship to obtain the force transmissibility from the displacement
transmissibility and vice versa, in mdof dynamical systems. This relationship will allow one to perform force identification
using displacement transmissibility, which is a very practical technique, especially if the displacement transmissibility can
be measured in operational conditions, not using FRFs. In this case, it is not necessary to measure the forces and the study of
the structure can be performed under free–free conditions.

The proposed relationship is validated through the numerical simulations and experimental tests. From these
developments, one can draw the following main conclusions:
(i)
Please cite
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sibility from the force transmissibility and vice versa.
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(ii)
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The existence of such an mdof transmissibility relation depends on the number of coordinates involved. In some
situations the use of the inverse displacement transmissibility matrix, fictitious coordinates or fictitious forces
can circumvent some restrictions in the application of Eqs. (17) and (18).
(iii)
 The present generalization naturally accommodates the well-known single-degree-of-freedom case.
By the proposed relationship the authors present a solution for an unanswered question in the field of the transmissibility
concept.
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