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ABSTRACT 

 
The presented study concerns experimental dynamic identification of (slightly) anisotropic bladed rotors under operating 

conditions. Since systems with a rotating rotor do not fall into a category of time invariant system, a straightforward application 

of modal analysis is not valid. Under assumptions of linearity and constant angular speed, a system with rotating rotor can be 

considered as a linear periodically time variant (LPTV) system; dynamic identification of such systems require dedicated 

methods. The Harmonic OMA Time Domain (H-OMA-TD) method is one of very few techniques able to deal with anisotropic 

rotors. This study demonstrates the method on a simple six degrees-of-freedom mechanical system with a three-bladed rotor. 

It shows that the method is capable of identifying the phenomena specific for anisotropic rotors. The technique is compared 

with another technique, multiblade coordinate (MBC) transformation, and the advantages of H-OMA-TD become apparent 

when the rotor is anisotropic. Finally, the method is demonstrated on data measured on a real Vestas V27 wind turbine and data 

obtain via HAWC2 simulations of the same wind turbine. 
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1. Introduction 

 

The presented paper concerns the methods for experimental identification of bladed rotors with slight anisotropy. In industry, 

such methods are valuable means for investigation of dynamics of operating wind turbines. The current tendency in wind energy 

can be characterized by bigger wind turbines, greater wind loads (especially for offshore machines), lighter structures and 

longer lifetime. All these require the detailed understanding of wind turbine dynamic behavior while operating, and demand 

proper experimental techniques for their dynamic identification.   

 

While a standstill wind turbine can be considered as a linear time-invariant (LTI) system, an operating wind turbine certainly 

does not fall into this category. It is easy to demonstrate that the mass, stiffness, damping and gyroscopic matrices are dependent 

on rotor azimuth angle. Still assuming the linearity and constant rotor angular speed, one can categorize such a system as Linear 

Periodic Time-variant (LPTV, or LTP) system. Then, instead of well-established tools suitable for LTI systems, such as modal 

analysis and experimental techniques such as EMA and OMA, one needs to employ tools that are more advanced. 

 

In most of the practical cases, the rotor of a wind turbine is not completely isotropic. Despite the efforts of wind turbine 

manufactures, the rotor blades are never identical; there is some degree of rotor anisotropy even for a newly erected wind 

turbine. During the lifetime, the degree of anisotropy can increase temporarily or permanently. The former can happen e.g. due 

to ice formation on one of the blades, the latter – due to damage or loss of structural integrity of one of the blades, failure of 

the pitch mechanism or blade attachment to the hub. Such rotor anisotropy is considered as an “off-optimum situation” and 

shall be detected and avoided, if possible. Understanding and being able to characterize the differences in the dynamics between 



the isotropic and anisotropic rotors can apparently help in the abovementioned scenarios. Thus, one needs a proper tool for 

experimental dynamic characterization of operating wind turbine whose rotor might be slightly anisotropic.  

 

The tools allowing experimental dynamic characterization of LPTV systems are very limited: one can name MBC 

transformation adopted to experimental identification [1], the extension of stochastic subspace identification (SSI) to LPTV 

systems based on angular resampling [2] and harmonic power spectra (HPS) based methods [3]. The MBC transformation 

method assumes that the rotor is isotropic, it was demonstrated that application of this method to a system with an anisotropic 

rotor leads to incorrect results [4]. The method based on resampling was designed for systems with fast-rotating rotors such as 

helicopter, and its application to wind turbine data was not very successful [5]. For today, the HPS-based methods seem to be 

most suitable for wind turbine applications. Originally implemented in frequency domain (referred as H-OMA-FD) [6], the 

method was successfully applied to simulated wind turbine data (with isotropic rotor) [3] and to the data measured on real 

Vestas V27 wind turbine [7]. The time domain implementation of the method (referred as H-OMA-TD) was suggested by the 

authors in [8], and in [9] it was applied to the data measured on Vestas V27 wind turbine. 

 

Because system identification methods are only now emerging for LPTV systems, there are still very few studies that treat 

turbines with blade anisotropy, and so it is challenging to understand how the results relate to the turbine's performance.  The 

present study focuses on the effects of rotor anisotropy and investigates how these effects can be identified from experimentally 

obtained data using H-OMA-TD method. The paper is built as follows: section 2 explains what we understand under dynamic 

characterization of LPTV systems; section 3 briefs the reader for MBC- and HPS-based methods and explains why MBC 

transformation is not suitable for anisotropic systems. Section 4 demonstrates the H-OMA-TD method in application to systems 

with anisotropic bladed rotors: first we consider a simple six degree-of-freedom and then demonstrate the method on simulated 

and measured data from a Vestas V27 wind turbine. 

 

2. Theoretical background 

 

Consider a LTI system governed by equation 

 

 𝐌 𝐲̈(𝑡) + 𝐂 𝐲̇(𝑡) + 𝐊 𝐲(𝑡) = 𝟎 (1) 

 

where 𝐌, 𝐂, 𝐊 ∈ 𝑅𝑁×𝑁 are  mass, damping and stiffness matrices respectively and vector 𝐲(𝑡) ∈ 𝑅𝑁 is the displacements of 

system’s N degrees of freedom over time t. The solution to (1) can be presented as modal decomposition 

 

 

𝐲(𝑡) = ∑ 𝑏𝑟  𝛟𝑟𝑒𝜆𝑟𝑡

𝑁

𝑟=1

 (2) 

 

where the mode shape 𝛟𝑟 ∈ ℂ𝑁 and eigenvalue 𝜆𝑟 ∈ ℂ constitute the modal parameters for the rth mode and 𝑏𝑟 ∈ ℂ is the mode 

participation factor, which depends on the system initial conditions. Since one can completely characterize all of the possible 

dynamic responses of this system in terms of its modal parameters, finding them is often called system’s dynamic 

characterization. When the equation of motion is known, modal parameters can be found via eigenvalue analysis, e.g. [10]. In 

case when the equation of motion is unknown, we use experimental or operational modal analysis (EMA or OMA). 

 

The mass, damping/gyroscopic and stiffness matrices of a system with rotating rotor depend on rotor position (azimuth  

angle 𝜃) 

  

 𝐌(𝜃(𝑡)) 𝐲̈(𝑡) + 𝐆(𝜃(𝑡)) 𝐲̇(𝑡) + 𝐊(𝜃(𝑡)) 𝐲(𝑡) = 𝟎. (3) 

 

Under the assumption that the rotor angular speed Ω = 𝑐𝑜𝑛𝑠𝑡, thus 𝜃(𝑡) = Ω𝑡, the matrices become time-periodic 𝐌(𝑡 + 𝑇) =
𝐌(𝑡), 𝐆(𝑡 + 𝑇) = 𝐆(𝑡), 𝐊(𝑡 + 𝑇) = 𝐊(𝑡) with period 𝑇 = 2𝜋/Ω. We refer to such a system as an LPTV or LTP system. 

 

The main assumption of modal analysis, that the system under test is time invariant, is violated here. It means that generally 

modal analysis and modal decomposition are not applicable to LPTV systems. However, Floquet theory suggests a 

decomposition, similar to (2) but involving T-periodic mode shapes 𝐮𝑟(𝑡) 

 

 

𝐲(𝑡) = ∑ 𝑏𝑟

𝑁

𝑟=1

𝐮𝑟(𝑡)𝑒𝜆𝑟𝑡 (4) 



 

The periodic mode shapes can be expanded using Fourier transform  

 

 
𝐮𝑟(𝑡) = ∑ 𝐂𝑟,𝑛𝑒𝑗𝑛Ω𝑡

+∞

𝑛=−∞

 (5) 

 

and finally, the solution to (3) can be written as a modal superposition of sums of the harmonic components: 

 

 

𝐲(𝑡) = ∑ 𝑏𝑟 ∑ 𝐂𝑟,𝑛𝑒(𝜆𝑟+𝑗𝑛Ω)𝑡

+∞

𝑛=−∞

𝑁

𝑟=1

 (6) 

 

Thus, when saying dynamic characterization of an LPTV system, we mean finding its Floquet exponents 𝜆𝑟 ∈ ℂ and the Fourier 

coefficients 𝐂𝑟,𝑛 ∈ ℂ𝑁. Comparing (2) and (6), one can see many similarities: in both cases the solution is presented as modal 

superposition; the Floquet exponents are similar to the eigenvalues of the LTI system; they combine its natural frequency (the 

imaginary part) and damping (the real part). The Fourier coefficients can be thought as an infinite set of complex vectors, which 

together represent a periodic mode shape of the LPTV system, and thus they resemble the mode shape of the LTI system 𝛟𝑟 . 

  

If the equation of motion is known, the Floquet exponents and Fourier coefficients can be found via Floquet analysis (for small 

number of DOFs) or implicit Floquet analysis (for great DOFs number), see [11], table 3.1. To experimentally characterize an 

LPTV system, dedicated methods are needed, as will be considered the next section. 

 

3. Experimental techniques for LPTV systems 

 

There is a very limited set of tools applicable to experimental identification of LPTV systems. Here we briefly introduce 

multiblade coordinate (MBC) transformation and harmonic power spectra (HPS) based methods. 

 

3.1. Multiblade coordinate (MBC) transformation 

 

MBC transformation in application to wind turbines was introduced by Hansen, and its detailed description can be found in 

[12], [13]. The idea of the method lies in special coordinate transformation known as a multiblade coordinate or Coleman 

transformation. For a three-bladed rotor, the forward MBC transformation  

 

 

𝑎0,𝑘(𝑡) =
1

3
∑ 𝑞𝑖,𝑘(𝑡)

3

𝑖=1

, 𝑎1,𝑘(𝑡) =
2

3
∑ 𝑞𝑖,𝑘(𝑡)

3

𝑖=1

cos(𝜃𝑖(𝑡)) , 𝑏1,𝑘(𝑡) =
2

3
∑ 𝑞𝑖,𝑘(𝑡)

3

𝑖=1

sin(𝜃𝑖(𝑡)) (7) 

 

converts the set of three coordinates qi,k measured at kth DOF of blade no. i = 1,2,3 into a set of three multiblade coordinates 

a0,k, a1,k and b1,k. The transformation uses 𝜃𝑖(𝑡), which is the azimuth of the ith blade. 

 

Typically, vector y(t) is a mixture of the coordinates measured on the rotating rotor (qi,k) and those measured on not rotating 

substructures, e.g. on the tower and nacelle (sl): 

 

 𝐲(𝑡) = {… , 𝑞1,𝑘(𝑡), 𝑞1,𝑘(𝑡), 𝑞3,𝑘(𝑡), … , 𝑠1(𝑡), … , 𝑠𝐿(𝑡)}𝑇. (8) 

 

By substituting the coordinates measured on the rotating frame by the corresponding multiblade coordinates, it can be shown 

that, under the assumptions outlined below, the LPTV system transforms into an LTI system. Then, the conventional eigenvalue 

analysis can be performed on the obtained LTI system, resulting in eigenvalues and eigenvectors in multiblade coordinates. 

Finally, the eigenvectors can be converted back into the physical coordinates using the backward multiblade coordinate 

transformation  

 

 𝑞𝑖,𝑘(𝑡) = 𝑎0,𝑘(𝑡) + 𝑎1,𝑘(𝑡) cos(𝜃𝑖(𝑡)) + 𝑏1,𝑘(𝑡) sin (𝜃𝑖(𝑡)). (9) 

 

It is important to note that MBC transformation converts the LPTV system into the LTI system if the following assumptions 

fulfill: 

 



1. The rotor is isotropic, i.e. the blades are identical and attached identically to the hub; 

2. There is no gravity (for horizontal axis wind turbine, this condition can be relaxed for out-of-plane rotor modes since the 

out-of-plane blade motion is roughly perpendicular to the vector of gravity). 

 

In [1], the MBC transformation was adopted to experimental system identification, combining the MBC transformation with 

Operational Modal Analysis (OMA); the flow is shown schematically in Fig. 1. The approach was demonstrated on simulated 

data [1] and on the data measured on operating Vestas V27 wind turbine [4], [7].  

 

Applying the backward MBC transformation (9) to the mode shapes of the time invariant system, one can show that in physical 

coordinates the mode shape becomes periodic 

 

𝑢𝑖,𝑘(𝑡) = 𝐴0,𝑘 sin(𝜔𝑟𝑡 + 𝜑0,𝑘) + 𝐴𝐵𝑊,𝑘 sin ((𝜔𝑟 + Ω)𝑡 +
2𝜋(𝑖−1)

3
+ 𝜑𝐵𝑊,𝑘) + 

𝐴𝐹𝑊,𝑘 sin ((𝜔𝑟 − Ω)𝑡 −
2𝜋(𝑖−1)

3
+ 𝜑𝐹𝑊,𝑘) 

(10) 

 

where 𝜔𝑟 = 𝐼𝑚(𝜆𝑟) is the natural frequency of the rth mode of the time invariant system.  

 

Analyzing (10), one can note that: 

1. The method produces time periodic mode shapes, which always consist of three components.  

2. The three components oscillate at frequencies ωr, ωr+ Ω and ωr – Ω. 

3. All three blades have identical oscillation magnitudes. 

4. The phase between the blades is 0 for the first component (thus it is called collective component), –1200 for the second 

(backward whirling component) and +1200 for the third (forward whirling component).  

The last two properties can be described as a mode shape symmetry. That is, MBC transformation always produces modes 

with symmetric mode shapes. 

5. The coordinates measured on the not rotating parts always have only a single component, namely at frequency ωr. 

 

Drawing the analogy with the Floquet theory, one can notice that (10) is a truncated version of (5), where n = –1, 0, 1; 𝜆𝑟 and 

𝜆𝑟 ± Ω are the three Floquet exponents and the pairs (𝐴𝑋,𝑘, 𝜑𝑋,𝑘) can be considered as kth element in the Fourier coefficient 

vector.   

 

It becomes obvious, that application of the MBC transformation to the data measured on anisotropic rotor will lead to erroneous 

results. The effects of anisotropy, such as modes’ asymmetry, will be smeared out by the MBC transformation and cannot be 

correctly identified. Analysis of such a possible erroneous interpretation can be found in [4].   

 

3.2. Harmonic OMA (frequency domain) or H-OMA-FD 

 

Allen et al., [3] suggested a framework for experimental identification of LPTV systems. The framework is based on the Floquet 

theory [14] and on the concept of harmonic transfer functions introduced by Wereley [15]. The method does not assume rotor 

isotropy, and thus directly suitable for analyzing anisotropic rotors. The detailed description of the approach can be found in 

[3], below we only present its main steps, which are also outlined in Fig. 2. 

 

The core of the method is the modulation of the response signals using the phasors rotating with the fundamental circular 

frequency Ω and its integer multipliers 

 

 𝐲𝑚(𝑡) = 𝐲(𝑡)𝑒−𝑗𝑚Ω𝑡 , 𝑚 = −𝑀. . 𝑀, 𝑚 ∈ ℤ. (11) 

 

 
 

Fig. 1. Adaptation of MBC transformation to OMA 

 



Here y(t) is a vector of measured responses, 𝐲(𝑡) ∈ ℝ𝐾, see (8). The resulting vector consists of (2M + 1)K complex time 

histories, 𝐲𝑚(𝑡) ∈ ℂ(2𝑀+1)𝐾. The next step of the method is the calculation of the harmonic power spectra (HPS) matrix between 

the modulated signals: 

 

 𝐒𝑌𝑌(𝜔) = E〈𝐲𝒎(𝜔)𝐲𝒎(𝜔)𝐻〉, (12) 

 

where E〈… 〉 is mathematical expectation, (...)H is Hermetian transpose. Note that the resulting matrix is defined in the frequency 

domain. The theory in [3] states that the HPS matrix can be presented in terms of modes of the LPTV system. Preserving only 

dominant terms, [3] proves that the HPS matrix can be decomposed as: 

 

 

𝐒𝑌𝑌(𝜔) ≈ ∑ ∑
𝐂𝑛,𝑙𝐖(𝜔)𝐂𝑛,𝑙

𝐻

(𝑗𝜔 − (𝜆𝑟 − 𝑗𝑛Ω))(𝑗𝜔 − (𝜆𝑟 − 𝑗𝑛Ω))𝐻

∞

𝑛=−∞

𝑁

𝑟=1

  (13) 

 

where λr are the Floquet exponents, Cr,n are the Fourier coefficients and N is the number of modes. W(ω) describes the input 

spectrum. Under the standard OMA assumptions regarding the excitation, W(ω) becomes an identity matrix.  

 

Finally, the Floquet exponents and Fourier coefficients are extracted from the HPS matrix. This can be done by employing one 

of the conventional frequency domain methods known from classical modal analysis. 

 

The method operates in frequency domain, and we refer to it as H-OMA-FD method. The method was successfully applied to 

simulated data from randomly excited Mathieu oscillator and simulated data from an operating wind turbine [3] and to the 

measured data from an operating Vestas V27 wind turbine [7]. 

 

3.3. Harmonic OMA (time domain) or H-OMA-TD 

 

The recent advances in OMA, especially the improvements of the time domain OMA algorithms such as SSI, make it attractive 

to replace the curve fitting part of H-OMA-FD by OMA SSI.  The adaptation of H-OMA-FD method to OMA SSI was 

suggested and explained in [8]. In analogy to H-OMA-FD, we refer this extension as Harmonic OMA Time Domain (H-OMA-

TD). Below the main steps of the method are presented (and outlined in Fig. 3). 

 
 

Fig. 2. Steps of H-OMA-FD method. 

 

 

 

 
 

Fig. 3. Steps of H-OMA-TD method 



 

The first step of the two algorithms is the same: the measured signals are modulated using the phasor rotating at the rotor speed 

and its integer multipliers (11). In real applications the rotor speed can slightly vary; in this case it is advantageous to measure 

and use the rotor azimuth angle 𝜃(𝑡): 𝐲𝑚(𝑡) = 𝐲(𝑡)𝑒−𝑗𝑚𝜃(𝑡). The resulting time histories are complex. To be able utilizing 

commercial OMA implementations (e.g. SVS ARTeMIS or B&K OMA software Type 7760), one needs to make the time 

histories real, still conserving the important dynamic information contained in the modulation. Two approaches to convert the 

modulated signals to real time histories are suggested in [8]; if the OMA implementation allows using complex time histories, 

this step can be omitted. The “Special data assignment to geometry” step is illustrated in Fig. 4, it serves to ease the 

interpretation of the results. It consists of creating 2M “clones” of the original test object geometry and assigning the modulated 

data to the clones. Finally, the modulated signals are processed by the OMA algorithm, resulting in modal parameters, which 

can be interpreted as Floquet exponents and the Fourier coefficients; the latter can be animated to visualize each component of 

the mode shapes. The interpretation of the results is explained in detail in [8].  

 

3.4. Selection of M 

 

Expression (5) expands the periodic mode shape using an infinite number of Fourier components. This is not feasible in practice, 

and one has to truncate the series:  

 

 

𝐮𝑟(𝑡) ≈ ∑ 𝐂𝑟,𝑛𝑒𝑗𝑛Ω𝑡

+𝑀

𝑛=−𝑀

 (14) 

 

In the experimental interpretation of the HPS-based method, this corresponds to the selection of M in (11). Selecting the value 

of M, one can take into account the following considerations: As it follows from the MBC transformation (see section 3.1), a 

three bladed isotropic rotor in the absence of gravity requires exactly three Fourier components, thus setting M = 1 is sufficient 

to describe such a rotor. Gravity and anisotropy will require more Fourier components. From authors experience, selecting  

M = 2 or M = 3 is sufficient for most wind turbine related cases, when there are three blades and the rotor anisotropy is not too 

large.  

 

4. Application to anisotropic rotor 

 

4.1. Application to a simple six degree-of-freedom system 

 

In order to validate the method, let us consider a simple six degree-of-freedom system representing a three-bladed rotor mounted 

on a supporting structure (Fig. 5). The rotor is attached to a mass, which is supported in vertical and horizontal directions by 

two springs representing the bending and axial stiffness of the tower. Each rotor blade is constructed from two rigid arms, 

connected by a hinge with an angular spring modelling blade stiffness. The lumped mass at the end of the blade represents 

blade’s mass. The system can model the blade dynamics in the rotor plane and the associated motion of the supporting mass 

and the “drive train”. The same model was considered in [16], where the details are provided. The parameters of the model 

were selected to represent a 10MW wind turbine prototype whose rotor rotates at 9.6 rpm (the fundamental frequency is 

0.16Hz).  

 

 
 

Fig. 4. Special data assignment to the geometry. 

 

 



The system can be fully described by the set of coordinates y = {xC, yC, ϕ1, ϕ2, ϕ3, ψ}T, where xC, yC are the coordinates of the 

mass C, angles ϕ1, ϕ2, ϕ3 describe the angular displacements in the hinges and angle ψ  is the angular deformation of the flexible 

“drive train”. 

 

Knowing the parameters of the system, the equations of motion can be readily defined, and the Floquet analysis can provide 

the Floquet exponents and Fourier coefficients for all six modes of the structure. The application of Floquet analysis to the 

system is straightforward though cumbersome; it is described in details in [16] and omitted here. The results of the Floquet 

analysis are used as a baseline for the H-OMA-TD method validation. 

 

The validation is conducted via a simulated experiment: the system is subjected to random broadband excitation applied to the 

supporting mass and to the tips of the blades; and its response is simulated via time domain integration of the equations of 

motion using fourth order Runge-Kutta method. The obtained time histories become an input to the H-OMA-TD algorithm, 

which identifies the modal parameters (Floquet exponents and Fourier coefficients) of the turbine.  These are then compared 

with the analytically obtained ones for isotropic and anisotropic rotors. The rotor anisotropy is modelled as a 3% reduction of 

the stiffness of blade #3: k3 = 0.97k1. 

 

The focus of the paper is to assess the ability of H-OMA-TD to catch the dynamic features intrinsic to an anisotropic rotor, thus 

we chose the following validation strategy: First we compare the results of Floquet analysis for an isotropic rotor, with that for 

anisotropic rotors, with anisotropy due to gravity and due to differing blade stiffness.  This reveals features in the Floquet 

exponents and Fourier coefficients that are indicative of anisotropy. Then, we apply H-OMA-TD to the simulated isotropic and 

anisotropic rotors to see whether one can detect the features characteristic to anisotropic rotor from experimental data. 

 

Fig. 6 shows three rotor related modes, in industry these modes are traditionally called the backward whirling (BW) mode, 

forward whirling (FW) mode and collective mode. Three other modes (two tower related and one related to the drive-train) are 

not shown. Each mode consists of a number of Fourier components, oscillating at frequencies separated by Ω. The component 

with the biggest magnitude is placed in the center of the plot. One can see that the magnitude of the Fourier coefficients quickly 

decreases when moving away from the central component, meaning that only a small number of Fourier coefficients is required 

to describe modes’ periodicity. However, one has to be careful when selecting this number since it will increase for rotors with 

higher degree of anisotropy. 

 

The representation of complex Fourier coefficients in Fig. 6 may require some explanations. For each mode, the plot shows the 

magnitude of four DOFs: xC, ϕ1, ϕ2, ϕ3. The other two DOFs are not shown since their magnitude is much smaller. The 

magnitude is normalized such a way that the magnitude of the biggest Fourier component is set to unity. The phase subplot 

shows the phases of the rotor related DOFs ϕ1, ϕ2, ϕ3, which are adjusted such that the phase of ϕ1 is zero. One has to notice 

that the plots mix the translational and angular units (for xC and ϕ1, ϕ2, ϕ3 respectively) thus the direct comparison of the 

magnitudes corresponding to the different units is not valid.  

 

Comparing the corresponding modes of the isotropic and anisotropic rotors, one can spot some deviations. Naturally, the 

imaginary parts of the Floquet exponents (namely, the damped natural frequencies, shown by the ticks on the frequency axes) 

have slightly decreased; this is an obvious result of the reduced rotor stiffness. Secondly, some of the Fourier coefficients 

describing the mode shapes have changed. One can notice that some Fourier components are affected more than the others. 

The most evident effects of anisotropy are outlined by a dashed line and labeled by letters A…D.  

 

 
 

Fig. 5. Simplified three-bladed rotor system 

 



The effects labeled by “A” and “B” represent the significant change of phase and magnitude of blades 1…3 of the dominant 

whirling component of the BW and FW modes. This effect is better seen in the complexity plots in the insets. For the BW mode 

(Fig. 6 a,b), the magnitude of the blade with the decreased stiffness becomes greater, and the phase between this blade and two 

other blades becomes greater than 1200. For the FW mode (Fig. 6c,d), the effect is opposite: the magnitude of the “damaged” 

blade becomes smaller and the phase between this blade and two others becomes less than 1200. Generalizing, one can say that  

a) 

 

b) 

 

  
c) 

 

d) 

 

  
e) 

 

f) 

 

  
Fig. 6. Rotor related modes obtained via Floquet analysis: a,b) backward whirling mode, c,d) forward whirling mode, e,f) 

collective mode. Left column: isotropic rotor in the presence of gravity; right column: anisotropic rotor with reduced 

stiffness of the third blade (kc = 0.97ka).  
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the rotor anisotropy causes a loss of symmetry of the whirling rotor modes. The idea of using this phenomenon to detect and 

localize blade damage was introduced and investigated in [16].  

 

The phenomenon labeled by letter C affects both BW and FW modes and appears as a significant increase of side-to-side tower 

motion at central frequency ±2Ω (“+” for the backward and “–” for the forward mode). Finally, the effect denoted by letter D 

appears as two sidebands in the tower motion in the collective mode (Fig. 6e,f).  

 

Fig. 7 plots the Fourier coefficients for same three modes, which are now obtained by the H-OMA-TD method applied to the 

data generated in the simulated experiment. The experiment was repeated five times, every time we generated new random 

excitation forces; the five datasets containing the simulated dynamic response (each 7200s long, corresponding to 1150 rotor 

revolutions) were input to the H-OMA-TD method. The average and confidence intervals of the results are presented in Fig. 7. 

To ease the comparison, we used the same mode normalization and phase rotation scheme as for Fig. 6. 

 

As one can see, the abovementioned phenomena due to the rotor anisotropy are caught by the method, though not precisely. 

The method was able to catch the phase changes due to the anisotropy (the areas denoted by letter A for both backward and 

forward whirling modes, Fig. 7b,d), with quite high confidence. However, the changes in blade magnitudes (areas “B”) for 

these modes are not very evident, though it is present; also, the confidence is lower. The third phenomenon, denoted by letter 

C is also caught, also with lower confidence. Anyway, it is apparent that the magnitude of the side-to-side component of the 

whirling modes at the central frequency ±2Ω is about 5 times higher than for the isotropic rotor. Finally, the method catches 

the increase of the sidebands magnitudes for the collective mode (areas “D” in Fig. 7f), more at 1.64Hz and less at 1.96Hz, 

though again, the confidence is quite low.  

 

It is also clear that the method finds several components that do not exist in the analytical solution (Fig. 6). In Fig. 7a, they are 

outlined by the red dashed line and denoted by letter E. These “noise” components all have quite low confidence and can be 

filtered out. This also points to a challenge in performing this type of identification.  The method is prone to identify some 

component at every line in the spectrum, presumably due to noise or because the input forces are not fully white.  Fortunately, 

the method is most reliable for those response components that contribute most to the motion of the turbine.  

 

It is unclear why the method finds the side-to-side Fourier components at the central frequency ±2Ω in the BW and FW modes 

for the isotropic rotor (outlined by the red dashed line in Fig. 7a and Fig. 7c). According to the Floquet analysis, these 

components should not be present in the modes (see Fig. 6a,c). However, the spurious components that were identified in the 

isotropic case are 5-10x smaller than those in the anisotropic case, so it seems that these components could still be used as a 

measure of anisotropy. 

 

4.2. Application to data from simulated Vestas V27 with introduced rotor anisotropy 

 

The simulated experimented conducted on a simple six degree-of-freedom bladed rotor system demonstrated the capabilities 

of H-OMA-TD to capture the main dynamic effects of rotor anisotropy. However, for the simulations, the rotor was excited by 

broadband uncorrelated noise, which fulfils OMA assumption regarding the excitation. In reality, the blades of a wind turbine 

are loaded by aerodynamic forces, which are periodic and partly correlated due to wind turbulence [17]. Wind shear 

(dependence of the wind speed from the altitude) also causes a strong aerodynamic excitation at 1p. These properties of the 

excitation can complicate H-OMA-TD, as the loading is not completely fulfil the OMA assumptions.   

 

In order to check the performance of H-OMA-TD in more realistic scenario, the method was applied to the data generated using 

Horizontal Axis Wind turbine Code 2nd generation (HAWC2). This is a nonlinear aeroelastic code designed for simulation of 

the wind turbine dynamic response in time domain; the code was developed and maintained by the Wind Energy department 

of Technical University of Denmark (DTU) [18]. The code models the wind turbulence and calculates the aerodynamic forces 

acting on the blades. The dynamic response of the blades is simulated employing a multibody formulation, where each blade 

is represented by an assembly of Timoshenko beam elements. 

 

The vibrations of a Vestas V27 wind turbine were simulated; the same wind turbine type was a test object during the real 

measurement campaign described later. The detailed description of the modelling, model tuning and setting up a virtual 

experiment using HAWC2 can be found in [4]. Datasets corresponding to 20 minutes of wind turbine operating at 32 rpm rotor 

speed were generated; the rotor anisotropy was modelled by the gradual decrease of Young modulus for blade #2.  

 

Fig. 8 presents the results of H-OMA-TD applied to the simulated Vestas V27 data. Only the dominant whirling components 

of the BW and FW modes are shown as complexity plots. Here we see the same tendency as in the insets in Fig. 5b,c: for the 



BW mode, the magnitude of the “damaged” blade becomes greater, while for the FW mode it decreases. The phase between 

the damaged blade and two others becomes greater than 1200
 for the BW mode, and oppositely, for the FW mode, it becomes 

a) 

 

b) 

 

  
c) 

 

d) 

 

  
e) 

 

f) 

 

 
 

 

Fig. 7. Rotor related modes obtained by H-OMA-TD: a,b) backward whirling mode, c,d) forward whirling mode, e,f) 

collective mode. Left column: isotropic rotor in the presence of gravity; right column: anisotropic rotor with reduced 

stiffness of the third blade (kc = 0.97ka). The error bars in the phase plots correspond to 95% confidence; the per-cent 

values in the magnitude plots denote a half-width 95% confidence interval as a percentage of the mean magnitude. 
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less than 1200. That is, one can see that the H-OMA-TD is able to catch the loss of mode shape symmetry due to the rotor 

anisotropy but now in more realistic excitation conditions.  

 

 

4.3.Application to data measured on Vestas V27 wind turbine 

 

This section briefly presents the results of H-OMA-TD applied to the data measured on a real wind turbine (Vestas V27). The 

details of the measurement setup and the campaign are given in [19].  

 

Starting analyzing data from the real wind turbine, we were not aware about the current rotor state, and we assumed it to be 

isotropic. In studies [4] and [7], the MBC transformation was applied to the data, and some doubts regarding the rotor isotropy 

of that particular wind turbine were expressed. Study [9] applied H-OMA-TD to the same data and confirmed the suspected 

rotor anisotropy. The Fourier coefficients of the BW and FW modes are shown in Fig. 9. Both modes are clearly dominated by 

one component (m=0 corresponds to 3.59Hz for the BW mode and 3.52Hz for the FW mode, for the given case, the rotor speed 

is 32 rpm)1. Analyzing the Fourier coefficients of these modes, one can identify some features of the rotor anisotropy, which 

are listed in section 4.1. The mode shapes are not symmetric, all three blades have different magnitudes: the BW mode features 

the highest magnitude of Blade #1 and lowest of Blade #3, for the FW mode the magnitude order is opposite: Blade #1 is lowest 

and Blade #3 is highest. The phases do not make a very clear picture; however, one can note almost 1800 phase between Blade 

#1 and two other blades for the BW mode, though the phase distribution of the FW mode does not fit the pattern derived from 

the analytical model and the simulations.  

 

5. Conclusion and further research 

 

The paper validates applicability of the time domain implementation of the HPS-based method (referred here as H-OMA-TD) 

to systems with rotating slightly anisotropic rotor. The validation is based on a simple six DOFs mechanical system resembling 

a horizontal axis wind turbine and done via comparison with analytic results obtained via Floquet analysis. The method was 

                                                           
1 Comparing Fig. 9 with Fig. 6 and Fig. 7, one has to take into account the scaling between the rotational and translational 

DOFs: in the analytical and simulation cases, the rotational DOFs are in angular units. In the case of measured data, the 

rotational DOFs are in translational units (here, the acceleration measured in the tangential direction at the tip of the blades).  

a) 

  

b) 

  

c) 

  

d) 

  

e) 

  

f) 

 

g) 

  

h) 

  

Fig. 8. Complexity plots of the dominant components of the whirling modes [16]. Top: BW mode: a) isotropic rotor; b) 

1% Young modulus reduction of blade 2; c) 3% Young modulus reduction of blade 2; d) 5% Young modulus reduction 

of blade 2. Bottom: FW mode: e) isotropic rotor; f) 1% Young modulus reduction of blade 2; g) 3% Young modulus 

reduction of blade 2; h) 5% Young modulus reduction of blade 2. 
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also applied to data generated via HAWC2 simulations of a Vestas V27 wind turbine and the data measured on a real Vestas 

V27 machine. 

 

The validation demonstrates that the method can qualitatively catch the important features of rotor anisotropy, such as a loss 

of symmetry of whirling modes and appearance of the additional side-to-side components in whirling and collective modes. 

Quantitatively, the method detects some of the effects better than the others, for example, the phase change is detected with 

good confidence, while the confidence in magnitude change is lower.  

 

Concluding it is important to note that MBC transformation, widely used in wind turbine design, can only produce modes with 

symmetric mode shapes (see Section 3.1), thus the MBC-based methods are not capable to catch the abovementioned effects 

of rotor anisotropy. 
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