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ABSTRACT 

Microphone-array based beamforming measurements in wind tunnels exhibit 

reduced dynamic range due to flow-induced noise in the individual microphones. 

Even in open wind tunnels with the arrays outside the flow region, air turbulence 

will induce such flow noise. Assuming stationary signals and performing long-time 

averaging of a cross-spectral matrix (CSM), the noise contamination will be 

concentrated on the CSM diagonal. When the CSM is used for traditional 

frequency-domain beamforming, Diagonal Removal (DR) will avoid use of the 

contaminated diagonal. DR is effective at suppressing the noise, but it also often 

underestimates source strengths and removes weak sources. Other array processing 

methods must use the diagonal. Several algorithms that attempt to reconstruct the 

CSM diagonal have been published. It has been shown that remaining off-diagonal 

noise contributions will limit the performance of methods that operate only on the 

diagonal. A few algorithms exist that can overcome this limitation by performing 

modifications also on the off-diagonal elements of the matrix. The paper describes a 

few of these methods and describes their respective limitations and advantages. 

Results from simulated and real measurements are presented. 
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1. INTRODUCTION 

Flow-induced noise in microphones is a well-known problem when measuring 

outdoors or in a wind tunnel. The problem can be reduced using windscreens, but not 

avoided. Typically, noise source identification on a vehicle in a wind tunnel is performed 

with beamforming, using a microphone array. In an open tunnel, the array can be placed 

outside of the core flow, but still in a region with significant air turbulence. Based on 

recorded time signals from the microphone array, a Cross-Spectral Matrix (CSM) is first 

averaged, and in a second step the CSM is used typically for frequency-domain 

beamforming. If the measured flow-noise signals are independent stationary stochastic 

processes, then with increasing averaging time, flow-noise contributions will eventually 
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be present only on the diagonal of the averaged CSM. Use of windscreens will reduce the 

noise, but if the screens are not much smaller than the microphone spacing, then the noise 

created around one windscreen may be picked up by nearby microphones, resulting in 

contributions outside the CSM diagonal. 

Assuming the flow-noise contributions to be concentrated on the CSM diagonal, their 

effect on frequency-domain beamforming results can be removed by use of so-called 

Diagonal Removal (DR), where use of the diagonal elements is avoided [1]. Effectively, 

the diagonal elements are set to zero, which will often lead to the matrix having negative 

eigenvalues, which will in turn produce negative contributions to the focused source 

power map. The result will be underestimated source levels, cancellation of weak sources 

and perhaps areas with negative power in the contour maps produced. 

Beamforming deconvolution techniques such as Non-Negative Least Squares (NNLS) 

[2], which are based on use of the so-called Point Spread Function (PSF), can be 

implemented with DR. This is because the PSF can be calculated using DR. CLEAN-SC 

[3] also includes a DR procedure, which however is much more complicated, requiring 

for each new identified point source an iterative solution of a system of non-linear 

equations. In Ref. [4] the iterative solution procedure was found to work nicely for the 

strong sources but failed to converge for the weaker sources. To overcome that limitation, 

the Diagonal Denoising (DD) algorithm [5] was adopted. With other beamforming 

algorithms, such as Functional Beamforming [6], the diagonal of the CSM is needed, so 

DR cannot be applied. 

The DD method and related methods [7-8] subtract a maximum of signal power from 

the CSM diagonal while maintaining all off-diagonal elements unchanged and while 

retaining the matrix positive semidefinite (i.e. with no negative eigenvalues). It is shown 

in Ref. [5] that residual off-diagonal flow-noise contributions will limit the effectiveness 

of the method. If a very long averaging time has been used, ensuring that the off-diagonal 

flow-noise contributions have been reduced to be small, then the DD method will be 

effective. A long averaging time, however, requires the acquisition and storage of long 

time-data records for typically 100 to 200 array channels. This is expensive in terms of 

wind-tunnel time and data storage. Methods have therefore been developed, which can 

overcome the performance limitation set by the off-diagonal flow-noise contributions. 

These methods still retain the CSM as positive semidefinite, but they support small 

changes being applied to the off-diagonal elements. Examples of such methods include: 

Robust Principal Component Analysis (RPCA) [9-10], Probabilistic Factorial Analysis 

(PFA) [11] and Canonical Coherence Denoising (CCD) [12]. 

The present paper gives in Sec. 2 a brief description of the different methods with a 

focus on DD and CCD. Results from simulated measurements are given in Sec. 3, while 

Sec. 4 presents results from a real wind-tunnel measurement. Sec. 5 contains a Discussion, 

providing a graphical overview of the principles and applications of the methods. Finally, 

Sec. 6 contains a summary. 

 

2.  THEORY 

 

2.1 Problem statement 

We model the sound pressure at M array microphones as coming from K mutually 

incoherent target sources and with independent noise added at each individual 

microphone. For snapshot number  𝑙 = 1,2, … , 𝐿, we consider the complex signals at a 

selected FFT line. Representing by 𝐬𝑙 the K-element complex source-signal vector, by 𝐧𝑙 

the M-element complex noise-signal vector and by 𝐩𝑙 the microphone pressures, we can 

then write: 



 𝐩𝑙 = 𝐇𝐬𝑙 + 𝐧𝑙, 𝑙 = 1,2, … , 𝐿, (1) 

where 𝐇 ∈ ℂ𝑀×𝐾 contains the transfer functions from sources to microphones. The 

averaging of the cross-spectral matrix can now be expressed as follows: 

 𝐆 ≡
1

𝐿
∑ 𝐩𝑙𝐩𝑙

𝐻𝐿
𝑙=1 ≡ 𝐩𝑙𝐩𝑙

𝐻̅̅ ̅̅ ̅̅ ̅, (2) 

where H represents Hermitian (conjugate) transpose, and where a bar on top represents 

snapshot averaging. 

With a denoising algorithm we would ideally like to extract from 𝐆 the noise free 

matrix 𝐆0 defined as: 

 𝐆0 = 𝐩0,𝑙𝐩0,𝑙
𝐻̅̅ ̅̅ ̅̅ ̅̅ ̅, (3) 

where 𝐩0,𝑙 is a vector containing the noise-free microphone signals: 

 𝐩0,𝑙 = 𝐇𝐬𝑙. (4) 

Using the above definitions, we can write: 

 𝐆 ≡ 𝐆0 + 𝐧𝑙𝐧𝑙
𝐻̅̅ ̅̅ ̅̅ ̅ + 𝐩0,𝑙𝐧𝑙

𝐻̅̅ ̅̅ ̅̅ ̅̅ + 𝐧𝑙𝐩0,𝑙
𝐻̅̅ ̅̅ ̅̅ ̅. (5) 

When the number of averages tends to infinity, the noise contribution 𝐍 ≡ 𝐧𝑙𝐧𝑙
𝐻̅̅ ̅̅ ̅̅ ̅ will 

converge to a diagonal matrix 𝐍∞ = diag(𝜎𝑛
2), while the cross terms 𝐩0,𝑙𝐧𝑙

𝐻̅̅ ̅̅ ̅̅ ̅̅  and 𝐧𝑙𝐩0,𝑙
𝐻̅̅ ̅̅ ̅̅ ̅ 

will vanish, because the source signals and the noise signals are all mutually incoherent. 

Here, 𝜎𝑛 is the noise variance and diag(𝜎𝑛
2) is a diagonal matrix with diagonal elements 

𝜎𝑛
2. However, as described for example in reference [5], this convergence is quite slow, 

so with a realistic number of averages, the off-diagonal elements of 𝐆 will typically still 

contain significant noise contributions. The amplitudes of the off-diagonal noise-noise 

cross spectra 𝑁𝑚,𝑚̃ in the matrix 𝐍 will converge approximately as: 

 |𝑁𝑚,𝑚̃| ≈ √
𝑁𝑚,𝑚𝑁𝑚̃,𝑚̃

𝐿
≈

𝜎𝑛
2

√𝐿
    for   𝑚 ≠ 𝑚̃, (6) 

and similar expressions will hold for the signal-noise cross terms in 𝐩0,𝑙𝐧𝑙
𝐻̅̅ ̅̅ ̅̅ ̅̅  and 𝐧𝑙𝐩0,𝑙

𝐻̅̅ ̅̅ ̅̅ ̅. 

When the source signals in 𝐩0,𝑙 are stronger than the noise signals in 𝐧𝑙, then the off-

diagonal cross terms will be larger than the off-diagonal noise terms 𝑁𝑚,𝑚̃. Use of for 

example 900 averages will only reduce the off-diagonal noise contributions by a factor 

1/30, corresponding to 14.8 dB of attenuation. In addition, with many microphones there 

will be a much larger number of off-diagonal elements than the number of diagonal 

elements. This seems to increase the impact of these remaining off-diagonal noise 

contributions on the DD denoising algorithm to be described in the following section. 

 

2.2 Diagonal Denoising (DD) 

The Diagonal Denoising algorithm assumes that enough averaging has been performed 

that all off-diagonal noise contributions have been effectively removed: 

 𝐆 ≅ 𝐆0 + diag(𝜎𝑛
2). (7) 

To remove the noise contributions on the diagonal, the algorithm subtracts a maximum 

of power from the diagonal elements of G, while retaining the resulting matrix positive 

semidefinite: 

 max
𝐝

∑ 𝑑𝑚𝑚     subject to    𝐆 − diag(𝐝) ≥ 0. (8) 

Here, d is a vector with elements 𝑑𝑚, diag(𝐝) is a diagonal matrix with elements 𝑑𝑚, and 

“ 0” for a matrix means that it has non-negative eigenvalues (is positive semidefinite). 

As pointed out in reference [5], the optimization problem in Equation (8) has the form of 

a so-called Semidefinite Program, which can be solved efficiently and with guaranteed 

convergence properties using Convex Optimization methods. Once the problem has been 

solved, the denoised matrix 𝐆DD is obtained as: 

 𝐆DD =  𝐆 − diag(𝐝). (9) 



It follows from Equation (8) that the algorithm will continue subtracting power from 

the diagonal until at least one eigenvalue of 𝐆DD equals zero. Thus, if the noise-free 

matrix 𝐆0 has only positive eigenvalues, then the DD method will subtract too much. This 

happens when the number of incoherent sources is equal to or larger than the number of 

microphones. In reference [5] it was shown by simulated measurements that accurate 

subtraction of the noise contribution on the diagonal is achieved, if the number of 

incoherent target sources does not exceed a limit around 𝑀 − √2.5𝑀. Above that limit, 

the deviation between 𝐆0 and 𝐆DD increases quickly, probably because too much is 

subtracted. 

So far, we have assumed that all noise contributions were removed from the off-

diagonal elements by averaging. In reference [5] it is investigated based on simulated 

measurements, how remaining off-diagonal noise contributions will limit the amount of 

noise power that the DD algorithm can remove from the diagonal. The investigation 

assumed identical noise level in all microphones, and the noise signals were assumed to 

be much stronger than the source signals, implying that off-diagonal cross terms 𝐩0,𝑙𝐧𝑙
𝐻̅̅ ̅̅ ̅̅ ̅̅  

and 𝐧𝑙𝐩0,𝑙
𝐻̅̅ ̅̅ ̅̅ ̅ could be neglected. The off-diagonal noise-related contributions will cause the 

smallest eigenvalue of the matrix 𝐆 − diag(𝐝) to reach zero at an earlier stage, when 

maximizing the noise subtraction from the diagonal in Equation (8), providing therefore 

less noise reduction. The simulations in Ref. [5] showed that the achievable reduction 

factor 𝛼 for the noise contributions on the diagonal could be approximated as: 

 𝛼 ≈
(𝑀−1)0.625

√𝐿
. (10) 

Equation (10) shows, as mentioned in the previous section, that large arrays will have 

poorer noise reduction on the diagonal than small arrays, probably because of the 

relatively larger number of off-diagonal matrix elements with disturbing noise 

contributions. 

Figure 1 shows the achievable reduction in decibels as a function of the number L of 

averages for three different microphone counts M. The graphs show that for large arrays, 

a huge number of averages is needed to provide a significant noise reduction on the CSM 

diagonal. 

 

 
Figure 1. Achievable reduction in decibels of the noise on the diagonal versus the 

applied number of averages for arrays with 30, 60 and 108 microphones. 

 

When the source signals have an amplitude higher than the noise signals, then the cross 

terms 𝐩0,𝑙𝐧𝑙
𝐻̅̅ ̅̅ ̅̅ ̅̅  and 𝐧𝑙𝐩0,𝑙

𝐻̅̅ ̅̅ ̅̅ ̅ will add an even larger off-diagonal noise contribution, which 



will tend to further reduce the noise reduction that can be achieved on the diagonal. 

However, then the source signals will add positive contributions to the CSM eigenvalues, 

which will to some degree support a larger diagonal noise subtraction in Equation (8) 

before one of the eigenvalues reaches zero. The achievable reduction will depend on the 

actual source configuration. 

 

2.3 Canonical Coherence Denoising (CCD) 

The previous section showed that DD and related methods that subtract noise power 

from the CSM diagonal, while maintaining the matrix positive semidefinite, and while 

retaining all off-diagonal elements unchanged, will have very limited effect with realistic 

amounts of averaging. To overcome that limitation without generating denoised CSM’s 

with negative eigenvalues, methods that can modify the off-diagonal elements based on 

some reasonable model/principle will be needed. This section and the following two 

sections describe such methods. 

The present section describes the Canonical Coherence Denoising method of reference 

[12], which is based on dividing the array elements in two equally large groups X and Y, 

followed by extraction of the signal sub-space that is coherent between the two groups. 

The output from that basic method is the part 𝐆 of the matrix G, which represents the 

coherent sub-space. If enough averaging had been performed to concentrate the noise on 

the diagonal of G, this operation would remove all the noise from the diagonal. However, 

the matrix 𝐆 cannot represent more than M/2 incoherent sources. Thus, if the number of 

target sources is larger than M/2, then only a partial representation will be achieved. The 

solution described in reference [12] to overcome that limitation is to iteratively apply the 

coherent sub-space extraction to the residual matrix 𝐆 − 𝐆 using each time a new X/Y 

grouping and add the result to 𝐆. Three iteration were found to provide good results. 

It is demonstrated in reference [12] that after three iterations, this basic iterative 

approach will generate an output 𝐆 close to the output 𝐆DD from Diagonal Denoising. 

This is because a full modelling of all off-diagonal elements, including the residual noise 

contributions, is gradually enforced during the iteration. The following adaptations were 

introduced to optimize the performance and remove noise-related off-diagonal 

contributions: 

1) Signal sub-spaces with a low coherence between the X and Y groups were 

removed in each iteration. 

2) The number of iterations was reduced, if the noise level was estimated to be 

high. The noise level was estimated based on the relative average reduction of 

the diagonal elements in the first iteration (from 𝐆 to 𝐆). 

3) After each iteration, the number of significant sources was estimated from the 

eigenvalue-spectrum of 𝐆. If the number of sources was found to be relatively 

small, then the number of iterations was reduced. 

The final output will be written as 𝐆CCD. Details of the algorithm can be found in reference 

[12]. 

 

2.4 Robust Principal Component Analysis (RPCA) 

The RPCA method models the measured CSM as the sum of a sparse noise-CSM and 

a low-rank signal-CSM. The model adaptation is performed by minimizing a weighted 

sum of the nuclear norm (sum of the eigenvalues) of the signal-CSM and the 1-norm of 

the noise-CSM, while keeping the sum of the two partial CSM’s equal to the measured 

CSM. It is shown in reference [11] that the relative weighting of the two terms is very 

sensitive and difficult to choose, in particular when the number of incoherent sources is 



not small. As in the CCD method, parts of the off-diagonal elements can be identified as 

noise and removed. 

 

2.5 Probabilistic Factorial Analysis (PFA) 

This method assumes the same number of unknown sources as the number of 

microphones. Then, the complex transfer functions from the sources to the microphones 

and the complex amplitudes of the source and noise signals across snapshots are 

considered as random variables with assigned probability density functions. The 

parameters of that statistical model are inferred by use of the measured data. Again, the 

noise model will cover parts of the CSM outside the diagonal, and these parts will be 

removed. It is shown in reference [11] that the method performs very well, providing in 

most cases at least 5 dB better noise reduction than DD. The main drawback of the method 

is a very long computational time. 

 

3. SIMULATED MEASUREMENTS 

 

 
Figure 2. Illustration of the set-up used for the simulated measurements. Blue 

circles: microphones. Red diamonds: sources (18 in this case). 

 

A series of simulated measurements have been performed in Matlab using the setup 

illustrated in Fig. 2.  The 108-element array has an optimized half-wheel geometry with 

a diameter of 4.1 metre. In combination with its image in a rigid ground plane at Y=0, it 

constitutes a full wheel. Because of the reflective ground, the transfer matrices 𝐇 from 

the simulated sources to the 108 microphones must include the ground reflection. The 

sound source consists of a number of equidistant, incoherent, monopole point sources 

along a line at 4 metre distance, covering a 4-metre span and with equal amplitudes of all 

sources. The real and imaginary parts of the complex source signals in the snapshot 

vectors 𝐬𝑙 , 𝑙 = 1,2, … , 𝐿, were generated with standard normal distributions, implying 

that the signals were circularly-symmetric complex Gaussian. The noise signals in the 

vector 𝐧𝑙 were generated in the same way. All noise signals were of equal level, SNR 

(Signal to Noise Ratio) decibels below the average level of the signals in 𝐩0,𝑙. The 

simulated measurements to be presented used SNR values between -10 and 10 dB, with 

SNR = 10 dB representing the average sound pressure level in 𝐩0,𝑙 being 10 dB stronger 

than the common noise level. 



Only the error on the reconstructed matrix diagonal will be investigated. The relative 

average error level E for the “Raw” averaged matrix G was calculated as: 

 𝐸 ≡ 10 ∙ 𝑙𝑜𝑔10 (
‖diag(𝐆−𝐆0)‖2

‖diag(𝐆0)‖2
), (11) 

where the operator diag() extracts the diagonal elements of a matrix into a vector. The 

corresponding errors 𝐸DD and 𝐸CCD for the reconstructed matrices 𝐆DD and 𝐆CCD, 

respectively, were calculated in the same way. Only results from these two algorithms 

will be presented, and only a relatively high frequency of 10 kHz will be considered. 

Figure 3a shows the relative average errors as functions of the SNR for the case of 18 

incoherent sources and 1000 averages. On average, DD provides a noise reduction around 

3.1 dB, while CCD provides 8 to 11 dB of reduction. The DD noise reduction predicted 

by Equation (10) is 2.3 dB. 

 

    
Figure 3. Relative average diagonal error for the case of 1000 averages.  

(a) 18 sources, variable SNR. (b) Variable number of sources, 0 dB SNR. 

 

Figure 3b displays the diagonal error level as a function of the number of sources for 

the case of 1000 averages and 0 dB SNR. CCD provides between 7 and 12 dB of noise 

reduction, while for DD it is between 3 and 4 dB. Notice the weak step in the CCD curve 

that occurs, where the number of sources reaches 30. With few sources, only 1 iteration 

is taken. At approximately 30 sources, the algorithm switches to 2 iterations, and beyond 

67 sources, 2 or 3 iterations are used. As described above, the switching is controlled by 

a detected relative noise level and a detected number of significant sources. When the 

number of physical sources approaches the number of microphones, then it becomes 

difficult to both represent all the target sources accurately and to get good noise 

suppression. 

 

4. WIND-TUNNEL MEASUREMENT 

 

The simulated measurements of the previous section considered only the accuracy in 

the reconstruction of the noise-free cross-spectral matrix elements. To investigate, how 

CCD works in practice with beamforming, the method was applied to data acquired with 

a 108-element half-wheel array in FCA’s open semi-anechoic wind tunnel in Auburn 

Hills, Michigan. The array (with geometry as given in Sec. 3) was placed around 1 metre 

outside the core flow region, where there is still a significant amount of air turbulence. 

With 15 seconds of time data, 959 averages could be made. Only data from a single 

measurement with 140 km/h wind speed will be presented. Figure 4 shows aeroacoustic 

noise-source maps (sound intensity) for the frequency range 5-6 kHz obtained from three 

different beamforming calculations applied to the same measurement: 



1) NNLS [2] with DR 

2) CLEAN-SC [3] with DD 

3) CLEAN-SC with CCD. 

Both “Non-negative Least Squares” (NNLS) and “CLEAN based on Source Coherence” 

(CLEAN-SC) apply conventional frequency domain beamforming, but in a second 

“deconvolution” step they derive a point source model. The sound intensity maps are 

obtained from that point source model by assuming omni-directional radiation. 

Unfortunately, the actual aerodynamic source distribution cannot be accessed, so we can 

only compare the output from different methods. 

The Diagonal Removal (DR) applied with NNLS is very effective at suppressing noisy 

spikes in the map due to flow noise, but as described in Sec. 1 it is known to produce 

underestimation and to remove weak sources, in particular at high frequencies. The NNLS 

map in Fig. 4 is nice and smooth with no noise spikes inside the 20 dB display range, but 

weak sources - such as the side mirror and the rear edge of the front light - almost 

disappeared. Although the source at the side mirror is relatively weak, it has a very 

important contribution to the in-cabin noise, and thus its level is important. NNLS and 

related methods are nevertheless quite widely used, making the investigation shown here 

even more important. The CLEAN-SC calculation with DD was performed using only 12 

dB of dynamic range to limit the flow-noise spikes in high-frequency maps. The CLEAN-

SC calculation with CCD was performed with an increased 15 dB of dynamic range, and 

even then, it produces significantly lower noise spikes than DD in the 5-6 kHz map. The 

results in Fig. 4 show that CCD removes a very large part of the noise spikes, while at the 

same time retaining all the important target sources. 

 

 

 

  

Figure 4. Three calculations applied to the same wind-tunnel measurement with a wind 

speed of 140 km/h. The same colour scale and threshold “T” is used in all plots. (With 

kind permission from FCA). 

 

Figure 5 shows the sound power spectra obtained by area-integration of sound intensity 

plots as those in Fig. 4 over the full map area. As expected, the NNLS calculation provides 

somewhat lower power values at high frequencies than the other two methods because 

DR was applied. CLEAN-SC with DD produces the highest high-frequency levels, 

probably mainly because of the many high-level noise spikes in the maps. On that 

background, and because of the good results in simulated measurements, CLEAN-SC 

with CCD is believed to provide the most accurate results. Some small fluctuations are 



observed on the CCD based spectrum. Some of these are related to changes in the number 

of applied CCD iterations. 

The CCD denoising performed during the calculation of the 163 frequency lines 

represented in Fig. 5 took 1.15 s of CPU time on a Dell Latitude E6540 laptop when 

executing a serial (not multi-threaded) Fortran implementation from a Visual Studio 

debugger. Matrix computations were performed using the Intel Math Kernel Library 

(MKL). In the commercial implementation used to produce the results in Figs. 4 and 5, 

multi-threading is applied, and the software is not executed from a debugger. As a result, 

the CPU time spent on the CCD denoising is insignificant, being around 0.1 s. 

 
Figure 5. Area-integrated sound power spectra from the three calculations of Fig. 4. 

 

5. DISCUSSION 

 

Table 1 illustrates in the left column, how the three fundamentally different denoising 

methods (DR, DD and CCD) operate on an averaged CSM.  The operations performed 

on and off the diagonal are shown. 

Diagonal Removal sets all diagonal elements to zero and re-scales the output in such 

a way that the correct level is obtained, when focusing on a single monopole point source. 

However, when focusing in other directions, negative power will often occur due to 

negative eigenvalues of the matrix. When there are several sources, such negative power 

contributions will partially cancel other sources, leading to underestimation. If some of 

these sources are weak, they may be completely cancelled. 

Diagonal Denoising subtracts a maximum of signal power from the diagonal of the 

matrix, while keeping off-diagonal elements unchanged and retaining the matrix positive 

semidefinite. Thus, the problem with negative eigenvalues is avoided. The main 

limitation of the method is that remaining off-diagonal noise contributions will typically 

limit the noise power that can be removed from the diagonal before the smallest 

eigenvalue reaches zero. If a very long averaging time is applied, then the method will be 

effective, but with realistic averaging times, the benefit is very limited. 

Canonical Coherence Denoising (and RPCA and PFA) overcomes the limitation in 

DD by supporting modifications also outside the matrix diagonal. This requires a model 

that can identify noise-related off-diagonal component. CCD identifies noise as having 

very low coherence between two equally large groups of the array microphones. 

Remaining components (with medium-to-high coherence) are retained. If the number of 

target sources is larger than half of the microphone count, then some of the target signal 

components will be discarded. To overcome that limitation, several iterations must be 

performed with different groupings of the microphones. 



The right column in Table 1 gives examples of the array processing applications, with 

which the three denoising methods can be applied. As already mentioned, DR is 

associated with frequency domain beamforming (FDB), providing correct level when 

focusing on a single monopole point source. FDB is known to provide poor resolution at 

low frequencies and to produce high sidelobes (ghost sources). Deconvolution methods 

such as NNLS attempt to identify a distribution of incoherent monopole point sources 

that would produce the same FDB map as the actual measurement. This is done using the 

known response of the FDB beamformer to each one of the point sources – the so-called 

Point Spread Function (PSF). The PSF can be calculated using DR on a simulated 

measurement, and thus DR can be applied to the PSF-based deconvolution methods. 

 

Table 1. Left column: Illustrations showing, how the denoising methods operate on a 

CSM. Right column: Typical array processing methods, where the three denoising 

methods can be applied. The methods used in this paper are shown with bold font. 

 

Denoising method Typical array processing applications 

    

• Frequency Domain Beamforming 

(Delay and sum) 

• Related deconvolution methods based 

on use of a Point Spread Function, for 

example NNLS. 

 

• Frequency Domain Beamforming 

• NNLS 

• CLEAN-SC 

• Functional Beamforming 

• MUSIC 

• Acoustic Holography 

 

• Frequency Domain Beamforming 

• NNLS 

• CLEAN-SC 

• Functional Beamforming 

• MUSIC 

• Acoustic Holography 

 

DD and CCD can basically be used as a pre-processing step before any array-based 

noise source identification. This includes FDB and NNLS (PSF-based deconvolution), 



but also other beamforming methods such as CLEAN-SC, Functional Beamforming and 

Multiple Signal Classification (MUSIC) [13-14]. The MUSIC algorithm associates the 

largest eigenvalues of a CSM with the target signal and the remaining with noise. If the 

noise is too high, the method fails. CCD would be able to remove some noise before 

application of MUSIC. CCD is of course not restricted to beamforming applications. For 

example, the denoised CSM could be used for any type of Near-field Acoustic 

Holography, see for example reference [15]. 

 

6. SUMMARY 

 

The paper has described a couple of methods for denoising of an averaged cross-

spectral matrix (CSM) measured with an array of microphones. The target application of 

the denoised matrix is here noise-source identification on a vehicle in a wind tunnel using 

beamforming. Three fundamentally different approaches have been compared: 

1) Diagonal Removal (DR) which will set all elements on the matrix diagonal to 

zero. The method can be used with standard frequency domain beamforming 

and with associated deconvolution methods based on use of a Point Spread 

Function. The method is effective at suppressing noise effects, but due to 

reduced or even negative eigenvalues in the modified CSM, severe 

underestimation and removal of weak sources will result. 

2) Diagonal Denoising (DD) which subtracts a maximum of auto-power from the 

CSM diagonal, while keeping off-diagonal elements unchanged and while 

retaining the matrix positive semidefinite. The method is stable and 

computationally efficient but remaining off-diagonal noise contributions will 

seriously limit the amount of noise that can be removed, unless an extremely 

long averaging time has been used. 

3) Methods that can identify noise contributions in the full matrix (on- and off-

diagonal) and subtract these, while keeping the matrix positive semidefinite. 

Several such methods exist, but only one based on Canonical Coherence 

between groups of microphones has been reviewed and tested. That Canonical 

Coherence Denoising (CCD) method is fast, and it seems to work in general 

well with an automated selection of a coherence threshold and a number of 

iterations. 

These methods have been compared based on simulated measurements on monopole 

point sources and based on an actual array measurement from a wind tunnel. The 

simulated measurements showed that CCD can provide much better noise suppression 

than DD with a typical number of averages equal to 1000. The results from the wind-

tunnel measurement illustrated the underestimation by DR and the poor noise suppression 

provided by DD, pointing at CCD as the best option. CCD provided good noise 

suppression while avoiding the suppression of important secondary sources. CCD was 

also found to be computationally very efficient. 
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