A lot is riding on the performance of the F-35 Joint Strike Fighter or Lightning II as it is called in the USA; in the UK the chosen name is the Joint Combat Aircraft (JCA). The combat aircraft will be manufactured in three variants – conventional take-off and landing (CTOL), short take-off and vertical landing (STOVL) and a carrier variant (CV) – with expectations that some 3,000 aircraft in total will be built.
The wide variety of roles in which the aircraft will be deployed, combined with the differing expectations of the military, means that the airframe’s structure must be thoroughly tested to ensure top performance throughout its operational life. In addition the aircraft, in common with most modern combat aircraft, is dynamically unstable so that it benefits from high manoeuvrability. This poses additional structural challenges that need to be carefully checked during the aircraft’s development and throughout its in-service life.
BAE Systems, a lead UK contractor for the aircraft’s build and development, is responsible for the structural testing of the CTOL airframe. It continues to undertake and monitor structural developments on two F-35 airframes at its Structural and Dynamic Test Facility (S&DT) based at Brough, West Yorkshire.
S&DT aims to provide quantitative data that airframes meet their structural strength design specifications over the anticipated operational lifetime. It specialises in the design, manufacture and operation of large-scale structural tests throughout the entire test life cycle.
A key aspect of BAE Systems’ approach to the F-35’s structural testing regime was the need to develop improved methods of managing test information. The company wanted to streamline its approach by adopting a new mind-set that challenged previous methods.