
w\ 
r M 

Kl 

i t 

BRUEL& KJftR 

NARUM DENMARK 

12-244 



THE FAST FOURIER TRANSFORM AND THE USE OF THE COMPUTER 
TYPE 7504 AND THE DIGITAL EVENT RECORDER 

TYPE 7502 AS A FAST FOURIER TRANSFORM ANALYZER 

By Arne Gr0ndahl and Roger Up ton 

INTRODUCTION 

The idea of the Fast Fourier Transform (FFT) first appeared in 1965. It provides an 
algorithm which gives a far faster computation of the Discrete Fourier Transform than was 
previously possible, and has created for it a complete new range of applications where its 
use was previously thought impracticable. This Application Note starts off with a brief look 
at the philosophy behind FFT, and then goes on to describe a practical application of it using 
a Computer Type 7504 and a Digital Event Recorder Type 7502 as a single channel FFT 
Analyzer. 
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1. THE FOURIER TRANSFORM, THE DESCRETE FOURIER TRANSFORM, AND THE 
FAST FOURIER TRANSFORM 

The Fourier Transform pair is defined as follows: 

X(f) = f°° x(t) exp (-j 2wft) dt 
J -DO 

(1) 

x(t) = f X(f) exp (j 27rft) df (2) 

Since its conception in the early years of the nineteenth century, it has become an almost 
indispensible tool throughout the fields of physics and engineering, the two equations allowing 
the transfer from the time domain to the frequency domain and back again to be carried out as 
desired. However, when a waveform is being sampled, or when a system is being analyzed on 
a digital computer, the classic equations, given above, can no longer be used. They are of 
a continuous nature, and are therefore quite unsuitable for digital processing. Hence, the 
question arises as to how these equations can be used with modern digital processing 
techniques. 

The basic answer to this problem is obvious: equations (1) and (2) must be converted from 
a continuous form to a discrete form. Looking now at equation (1) only, one method of 
doing this is to replace the integral with a summation, and to limit the frequency variation 
to certain discrete values. Hence, if the waveform is sampled N times in a time T: 

N - 1 
X(fn) = AT E x ( t k ) e x p ( - j 2 f f f n t k ) (3) 

k = 0 

where n = 0, ± 1, ±2, ± N/2 

Equation (3) can be simplified a little by noting that AT = T/N 
andAf = 1/T, and by letting t k = kATand f n = nAf, Hence: 

X(n) = A T N C x ( k ) e x p H 2 i r # ) (4) 
k = 0 

where n = 0, 1, 2, N - 1. 

Similarly for equation (2) 

N - 1 
x(k) = Af £ L X(n) exp (j 2TT- j^ ) (5) 



where k = 0, 1,2, N - 1 

Equations (4) and (5) make up the Discrete Fourier Transform (DFT) pair. Given N samples 
of the wave form, equation (4) gives N samples of the spectrum, and given N samples of the 
spectrum, equation (5) gives N samples of the waveform. Hence the problem of digital Fourier 
transform processing would appear to have been solved. 

If we let W = AT exp (j 2TT)/N] then 

equation (4) becomes 

X(n) = 
N - 1 

x(k) Wn k (6) 
k = 0 

Equation (6) can conveniently be converted to matrix form 
such that: 

[X(n)] = [W" k [x0(k)] (7) 

Suppose that now we let N be equal to 4, that is we have taken 4 samples of a waveform and we 
require 4 samples of its spectrum. Writing out equation (7) in full for this case yields: 

X(3) 

w° w° w° w° 
w° w1 w2 w3 

W° W2 W4 W6 

w° w3 w6 w9 

xn (0) o 
o 

"1 

xn (1) 
x0(2) 
x0(3) 

(8) 

It is here that the fundamental problem with the direct evaluation of the DFT appears. To 
evaluate equation (8) will take 16 complex (W is complex) multiply and add operations. Put 
into more general terms, the direct evaluation of an N sample (or N - point) DFT will take N2 

complex multiply and add operations. This makes it a highly expensive and inefficient piece of 
digital processing. Hence, although direct evaluation of the DFT represents one solution to the 
problem of digital Fourier transform processing, it is a solution which is hardly worth using. 

The above situation meant that the use of Fourier transforms in digital processing was avoided. 
In 1965, however, the Cooley — Tukey FFT algorithm was published, (reference 3), and this 
revolutionised the whole approach to digital Fourier transform processing. It is an alternative 
method of evaluating the DFT which gives a startling reduction in the number of required operations. 
It can be considered as being a means of factorising the Wnk matrix of equation (7) such that the 
number of operations involved in its multiplication with the X n (k) matrix is reduced. 

When using the FFT, it is convenient to choose the number of sample points (i.e., N) such that 
they are an exact power of two. In equation (8), N = 2 2 , and hence the FFT can be applied. 
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The first step is to write each Wnk term in (8) in the manner Wnk m o d N . Hence since 
N = 4 : 

X(0) 

X(1) 

X(2) 

X(3) 

1 

1 

1 

1 

1 1 1 1 
W1 W2 W3 

w2 w° w2 

w3 w2 w 1 

x0 (0) 

x 0 (D 
x0 (2) 

x 0 (3 ) 
(9) 

Equation (9) can then be factorised as follows: 

x(oF 
X ( 2 ) 

X ( 1 ) 

_X ( 3 1 
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0 

W° 0 

W2 0 
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w 
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"x0 (Of 
x 0 (D 
x 0 (2) 

_x0 0)_ 

(10) 

If we recognise that W° = - W2, the evaluation of equation (10) will take 4 complex multiplica­
tions and 8 complex additions. This compares with 16 complex multiplications and additions 
in the case of equation (8). Hence, a considerable saving in the number of operations required 
has been accomplished. 

Put into more general terms, the Cooley-Tukey algorithm effectively factorises an N x N matrix 
into a(N x N) matrices, where N = 2a. The greater N is, then the greater the saving in operations 
in relation to the number required for direct evaluation of the DFT. The saving in computer 
time obtained by using the algorithm is approximately in the ratio a/N. Hence, for a 21 ° point 
transform, FFT is approximately 100 times faster than the direct evaluation of the DFT. 

Further information may be found, if required, from references (1) and (2), which are both of 
an introductory nature. These, in turn, also contain further valuable references. 

2. THE DIGITAL EVENT RECORDER TYPE 7502 AND THE COMPUTER TYPE 7504 
AS AN FFT ANALYZER 

Although not specifically designed as such, the Digital Event Recorder Type 7502 and the 
Computer Type 7504 can be operated together as a single channel FFT Analyzer. Such an 
Analyzer is illustrated in Fig.1. In it, the 7502 acts as the capture and display part and A/D 
and D/A Converter while the 7504 carries out all the processing. The Teletypewriter Type 6401 
forms the basic means of communication between the Analyzer and its operator. It is also used 
for program entry and as an alternative means of data input and output. Where its rate of 
input and output is too Slow, however a Tape Punch Type 6301 and a Tape Reader Type 7102 
may be added to the System. 
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Teletype Type 6401 

Tape Punch Type 6301 Computer Type 7504 
Digital Event Recorder 

Type 7502 

Tape Reader Type 7102 

572119 

Fig.1. FFT Analyzer comprising of a Computer Type 7504 and a Digital Event Recorder Type 7502 

The normal size of Memory of the 7502 when used in this application is 4kr (although any 
other size could equally well be used). Likewise, the normal size of Memory for the 7504 is 
8k, this being split into 4k for data and results storage, and 4k for program storage and processing 
Hence, where the processing function being carried out requires FFT on only one function (e.g., 
computing the voltage or power spectrum of a time function), the number of points in the 
transform can be any power of 2 up to 2 1 2 (= 4096 = 4k). Where, however, it requires FFT 
to be carried out on two functions (e.g., computing or transfer function or an crosscorrelation 
function), the amount of Memory in the 7504 available for data storage (4k) limits the maximum 
number of points in each transform to 2 11 (= 2048 = 2k) unless external data storage or a 
12k 7504 is used. 

The complete software package for the analyzer allows the following operations to be carried out 

Forward and inverse Fourier transform (1024 points in 0.3 s) ■ 
Power Spectrum measurement; 
Autocorrelation Function measurement; 
Hanning, Hamming and other weighting functions; 
Ensemble averaging in time or frequency domain; 
Complex and Complex conjugate multiplication; 
Standard arithmetic operations (add, subtract, multiply, divide); 
Coordinate conversion (polar/rectangular, i.e., real and imaginary part to 
amplitude and phase); 
Logarithmic/Linear conversion : 

Each of these subroutines may be carried out separately, being commanded from the 6401, 
or alternatively, they may be combined into a single complex program. 

An n point FFT is performed on a time function by first capturing it on the 7502. Any aliasing 
problems which can be caused by the sampling of the function by the 7502 are taken care of 
by the 7502's inbuilt antialiasing filters, which cut off at a quarter of the sampling frequency. 
Hence, assuming a 4k 7502, 4k points of the time function, having a upper limiting frequency 
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of a quarter of the sampling frequency, will be contained in the 7502's Memory. To perform 
the n point transforrn, n of the 4k points contained in the 7502's Memory are transferred to 
the 7504. When n is less than 4k, they may be taken from anywhere within the 4k, as long as 
they are consecutive. The 7504 then performs the FFT Algorithm on the n points, producing 
a result which has an (n/2) + 1 point real part and an (n/2) - 1 imaginary part. This result is 
stored in the Memory of the 7504, such that it may later be manipulated with another result 
to give, e.g., a transfer function, or such that it can be read out and displayed in terms of e.g., 
amplitude and phase. The actual display of a result is achieved by its read-out to the 7502 
Memory. A Play Back to a device such as an oscilloscope or a Level Recorder is then all that 
is required to complete the process. 

An n point transform ( or n point transforms where two are being used to produce a transfer 
function or autocorrelation function) will always produce an n point result. However, the 
result is in two separate parts, each part consisting of = n/2 points. Further, in the forward 
transform (i.e., from time to frequency), each of these parts has an upper limiting frequency, 
this being half the frequency with which the time function was originally sampled (i.e., the 
Nyquist or folding frequency). Hence, the resolution of each part in the frequency domain is 
this frequency divided by n/2. This means that the amount of detail seen in a transform can be 
increased by increasing the number of points, thus increasing the resolution. There is a limit 
to this, though, beyond which no matter how many points are used, no further information is seen 
This is the reciprocal of the length in the time domain represented by the event being transformed 
and is known as the bandwidth. For instance, if an event is 100 ms long, on transformation, it will 
have a bandwidth of 10 Hz. This means that no matter how many points are taken, no more 
information can be obtained from the transform than that obtained with a 10 Hz resolution. E.g. 
a 5 Hz resolution would give no more information than a 10 Hz resolution, although the 
information would be presented in more detail. 

Note that where the antialiasing filters are used on the 7502, although the results will be from 
DC to half the sampling frequency, those above a quarter of the sampling frequency will not 
be usable. Hence, the software ensures that they are not read out by the 7504 into the Memory 
of the 7502, and the frequency range of the displayed result is DC to a quarter of the sampling 
frequency. The resolution and bandwidth of the read-out is, however, unchanged. Note also 
that with analyses which normally use two simultaneously recorded channels of information, 
e.g., transfer function and crosscorrelation measurement, it is only possible to do them on this 
Analyzer if it is possible to repeat stimulii etc. in a manner such that they are synchronised 
with the sampling instants. It would, however, of course be possioie to convert the system 
into a two channel analyzer by using two 7502s in Master-Slave configuration. 

3. USE OF FFT FOR THE MEASUREMENT OF LOUDSPEAKER TRANSFER FUNCTIONS 

The conventional method of measuring the transfer function of a loudspeaker is to place it in 
an anechoic chamber, and to excite it using a sine wave. This sine wave is then swept at constant 
amplitude through the frequency range of interest The response of the loudspeaker to the sine 
wave is picked up with a microphone, and its variation with frequency is traced out using an 
instrument such as a Level Recorder. This gives the magnitude of the transfer function. Its 
phase is measured using a phase meter, its variation with frequency again being traced out with 
an instrument such as a Level Recorder. 

6 



This method has two disadvantages, first, that it requires an anechoic chamber, and second, 
that it takes a long time. The reason behind them is that the loudspeaker is only ever excited 
with one frequency at a time. An alternative to this would be to excite the loudspeaker with 
many frequencies at a time, and this is the idea behind the method using FFT. 

Square wave 
generator 

Loudspeaker 
under test 

m 
Power Amplifier 

2706 

Microphone 4133 + 
Preamplifier 2619 

Trigger Digital Event Recorder 
Type 7502 

" i 

- i 

tt 
"w 

I 

Measuring Amplifier 2606 Level Recorder 2305 or 2307 

Remote Control Cable 
I nterf ace 

* - -* -* 1 t . W Vu no* 

-■j.-= 

i Z. 
-

Computer 7504 572118 

Fig.2. Experimental set-up for measuring Loudspeaker Transfer Functions 

The system used to measure the transfer function of a loudspeaker using FFT is shown in 
7504 

of the 7504 software. 
into "Record" mode. 

The principle of the test: is that instead of being excited with one frequency at a time, in the 
form of a sinusoid, the loudspeaker is excited with an infinite number of frequencies, in the 
form of a pulse. The ideal pulse to use would be one which had a flat frequency spectrum 
up to the highest frequency of interest in the test;, and zero content thereafter. However, such 
an ideal pulse cannot be realised. For a real pulse, the requirements are that its spectrum is 
non-zero throughout the frequency range of interest, and that it also has a reasonable signal level 
in this range. Probably the best pulse to use is a Sin2 x pulse, but in the tests following, a square 
pulse was used. The spectrum of the square pulse is the well known (Sin x)/x function, 
with zeros appearing at multiples of the reciprocal of the pulse width. Hence, if the pulse 
width is set to the order of half the reciprocal of the highest frequency of interest, the 
two requirements will be satisfied. In the test, two pulse widths are used, namely, 20 /-is to give 
the transfer function from 0 — 25 kHz and 200 jus to give it from 0 — 2.5 kHz. 

The sampling rates used on the 7502 were 100 kS/s and 10 kS/s, giving FFTs with upper 
limiting frequencies of 50 kHz and 5 kHz respectively. However, as explained previously, 
the fact that antialiasing filters are used to avoid aliasing problems, they are really only usable 
up to 25 kHz and l.b kHz. Hence, 20 jus and 200 iis pulses, which have their first zeros at 
50 kHz and 5 kHz respectively, are reasonable. 

The process involved in the test is fairly simple. A command from the 7504 puts the 7502 
into "Record" mode, which, because of the modification, causes it to be triggered immediately 
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At the same time, the Pulse Generator is triggered, and emits the required square pulse. The 
pulse itself, or the loudspeaker response to it, (depending on whether or not the loudspeaker 
and microphone are by passed), is then Recorded on the 7502, whereby it is transmitted 
to the 7504 and the FFT algorithm performed on i t The result is stored on the 7504. The 
test is performed twice, once with the loudspeaker and microphone bypassed, and once with 
them in circuit. From there on, using the stored results, it is a simple matter to compute the 
required loudspeaker transfer function. 

n a n n a a n n n D a a D n n n n a D a G n a D a a a n n Q D D a n G n n D a D G a a D a a n n n a a a a a n 

Amplitude 0 - 25 kHz 

10 dB 

20 MS Square P u l s e " 

24 - 10 - 72 

QP 1102 572109 

□ D a D n c n D c n a n n n n n n D c n c n c n G a D a a D D n a n n a a a a n a a a a a D n a a n a n a n D 
&nJ*r Si Ki^r Bru*i &■ K.*f BaM & KKsr 

Phase, 0 - 2 5 kHz 

20 fiS Square Pulse lAnechoic Chamber 

6. 24-10-72 

QP 1102 572 108 

Fig,3. Amplitude and Phase Characteristics measured using 20 JJS Square Pufse in Anechoic Chamber 

Fig.3 shows the amplitude and phase of the transfer function of a loudspeaker obtained using this 
method. The frequency scale is 0 - 25 kHz (as explained previously), the 20 fis pulse being 
used. 2k point transforms were used with a 100 kS/s sampling rate, and hence the resolution 
is 50 Hz. (= 50 kHz/1 k). The length of time represented by the points is ~ 20 ms (= 2k x 100 
kS/s), and hence the bandwidth is also 50 Hz. The results were obtained using ensemble 
averaging in the time domain before the FFT Algorithm was performed, this process being 
carried out entirely under the software control of the 7504. After the results had been obtained, 
the test was repeated using a pulse width of 200 /xs, the 7502 being set to Record at 10 kS/s. 
The amplitude and phase of the transfer function from 0 - 2.5 kHz was hence obtained, 
(Fig.4) resolved to 5 Hz in the frequency domain. 
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At the same time, the Pulse Generator is triggered, and emits the required square pulse. The 
pulse itself, or the loudspeaker response to it, (depending on whether or not the loudspeaker 
and microphone are by passed), is then Recorded on the 7502, whereby it is transmitted 
to the 7504 and the FFT algorithm performed on it. The result is stored on the 7504. The 
test is performed twice, once with the loudspeaker and microphone bypassed, and once with 
them in circuit. From there on, using the stored results, it is a simple matter to compute the 
required loudspeaker transfer function. 

□ □ D D D n D Q n c D a n n n a n o c n c n c n n a n a Q D D n a n n n a a n n a a a a a D n n n o n a n n n 
B/uti & Kj<ftr Bry&l &■ Kh»r BKHli. Klw 

Phase, 0 - 2 5 kHz 
-:_+ 180 O 

20 *iS Square Pulse Anechoic Chamber 

— 6. 24-10-72 

QP1102 572108 

Fig.3. Amplitude and Phase Characteristics measured using 20 jds Square Pulse in Anechoic Chamber 

Fig.3 shows the amplitude and phase of the transfer function of a loudspeaker obtained using this 
method. The frequency scale is 0 - 25 kHz (as explained previously), the 20 /us pulse being 
used. 2k point transforms were used with a 100 kS/s sampling rate, and hence the resolution 
is 50 Hz. (= 50 kHz/1 k). The length of time represented by the points is ~ 20 ms (= 2k x 100 
kS/s), and hence the bandwidth is also 50 Hz. The results were obtained using ensemble 
averaging in the time domain before the FFT Algorithm was performed, this process being 
carried out entirely under the software control of the 7504, After the results had been obtained, 
the test was repeated using a pulse width of 200 /LIS, the 7502 being set to Record at 10 kS/s. 
The amplitude and phase of the transfer function from 0 - 2.5 kHz was hence obtained, 
(Fig.4) resolved to 5 Hz in the frequency domain. 
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Fig.4. Amplitude and Phase Characteristics measured using 200 JJS Square Pulse in Anechoic Chamber 

As a comparison, the wide range test was then carried out using the conventional swept sine 
wave excitation method. The results obtained using this method are given in Fig.5. (Note 
that they are from 0 - 2 0 kHz, and not 0 - 2 5 kHz). Within the bounds of experimental 
error, agreement with the results of Fig.3 is exact. 

All of the above tests were carried out under anechoic conditions. However, one of the 
advantages of the pulse excitation and FFT method should be that an anechoic chamber 
is not necessary. It should be possible to carry out the tests in a normal room, provided 
that it is large enough such that the first reflection from the walls, etc., of the loudspeaker 
response does not reach the microphone until after the 7502 has captured that response. In 
order to check this out, further tests were carried out in a normal room. 
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QP1102 572106 

Fig.6. Direct Play Back of Loudspeaker Response to 20 IJS and 200 ys pulses in Non-Anechoic Room 

Fig,7. Amplitude Characteristic from complete Loudspeaker Response to 20 [xs pulse in Non-Anechoic Room 



n a n n n a n n n n a a a D n n D a a n n a a a a a n D a c a n a a D Q a a a a D a n n D n n a D n a a n n n 

-Ampli tude, 0 - 2 5 kHz 

QP1102 

3 

nput: 20 ^S Square Pulse-

5. 26-10-72 

10 dB 

Reflections Removed 

Non-Anechoic Room 

omi 572113 

Fig.8. Amplitude Characteristic from Loudspeaker Response to 20 ys pulse in Non-Anechoic Room 
with Reflections removed 

Fig.7 and 8 show the amplitude of the loudspeaker transfer function as measured in this 
room using a 20 MS pulse (i.e., from 0 to 25 kHz). Fig.7 shows the result which occured 
when the FFT algorithm was performed on the entire 20 ms time history, including the 
reflections. The trace shows a great deal of uncertainty. For Fig.8, the time history was 
multiplied by a time window (by the software) prior to processing, such that the reflections 
were removed. A much clearer trace results. However, now, the effective length of the 
recording has been reduced to 6.4 ms, meaning that the bandwidth has increased to 
160 Hz, meaning that detail has been lost. This is still a reasonable bandwidth for a test 
from 0 — 25 kHz, though, and the agreement between Figs.8 and 3 is excellent. 

26 - 10 - 7 2 3 ^ : Non-Anechoic Room 

QP1102 D f t T l 572112 

Fig.9. Amplitude Characteristic form Loudspeaker Response to 200 IJS pulse in Non-Anechoic Room 
with Reflections removed 

Unfortunately, the same does not apply when a 200 MS pulse is used to measure the transfer 
function from 0 — 2.5 kHz. The first reflection still appears after 6.4 ms, and hence, when 
the reflections have been removed, effectively a 6.4 ms time history is again used to obtain the 
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transfer function, giving the same bandwidth of 160 Hz. Now, however, with the range of 
measurement reduced to 2.5 kHz, this bandwidth is totally inadequate, as the result of Fig.9 
shows. Compare Fig.4, which gives the more detailed result. However, to achieve the same 
degree of agreement between Fig.4 and 9 as is seen between Fig.3 and 8 would require that 
the first reflection did not appear at the microphone until 64 ms after the start of the response, 
which in turn would require that the first reflecting surface was at least 20 m away. Hence, 
its success requires the use of a room approaching concert hall dimensions. This should not ' 
be allowed to detract from the success of the method with a 20 jus pulse, though, in a room 
of much more modest proportions. 

All the above tests used ensemble averaging is the time domain to cancel out background noise 
On each one, 128 runs were averaged out in all, entirely under software control. The effect 
of the background noise can be seen from Fig. 10. This is the trace which was obtained 
when it was attempted to measure the amplitude of the transfer function of the loudspeaker 
by the swept sine wave excitation method, in the same room as that which was used to 
perfrom the tests which produced Figs. 6, 7, 8 and 9. 
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Fig, 10B Amplitude Characteristic measured using 0 -+ 20 kHz Swept Sine Wave in Non-Anechoic Room 

4. CONCLUSIONS 

It has been shown that the 7504 and 7502, given appropriate software, can be used as an 
FFT Analyzer. It has also been shown that an FFT approach can be used to measure 
Loudspeaker transfer functions which gives equivalent results to those obtained using the 

r 

conventional swept sine wave excitation method, and which can also be used outside an 
anechoic chamber where the bandwidth is determined by the room dimension. 
Where this method really gains over the conventional one, however, is in flexibility 
in that, for instance, many runs can be averaged to produce one result, and that the one 
result contains both amplitude and phase information. 
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