APPLICATION NOTE

Modal Analysis using Multi-reference and Multiple-Input Multiple-Output Techniques
H. Herlufsen, Briel &Kjger, Denmark

Introduction

Modal analysis based upon classical input/output measurements, known as ‘mobility
measurements’, is a well-proven and well-established application.

A number of practical techniques ranging from simple dual-channel measurements using
an impact hammer, to multi-channel Multiple-Input Multiple-Output measurements using
more shakers can be applied.

The aim of this application note is to give a brief overview of the mobility measurement-
based modal analysis methods and give some practical explanations and hints for use of
the different techniques. This includes multi-reference and Multiple-Input Multiple-Out-
put measurement techniques.

A new experimental modal analysis technique based upon measurements of only the out-
puts of a system has also been developed. This technique can be applied under operation-
al conditions and is, therefore, called Operational Modal Analysis (OMA). Reference 4,
referred to at the end of the note, describes OMA in detail, and thus it is not dealt with
further in this note.

Abbreviations Used:

DOF Degree of Freedom

FFT Fast Fourier Transform

FEM Finite Element Model

FRF Frequency Response Function
MIMO Multiple-Input Multiple-Output
SIMO Single-Input Multiple-Output
SISO Single-Input Single-Output
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Review of Modal Analysis

The dynamic behavior of a structure in a given frequency range can be modelled as a
set of individual modes of vibration. The structure is assumed to behave as a linear,
time-invariant system. The parameters that describe each mode are:

natural frequency or resonance frequency
(modal) damping
mode shape

These are called the modal parameters. By using the modal parameters to model the
structure, vibration problems caused by these resonances (modes) can be examined
and understood. In addition, the model can subsequently be used to come up with
possible solutions to individual problems.

The modal parameters can be extracted from a set of Frequency Response Function
(FRF) measurements between one or more reference positions and a humber of meas-
urement positions required in the model. A position is a point and a direction on the
structure and is hereafter called a Degree of Freedom (DOF). The resonance frequencies
and damping values can be found from any of the FRF measurements on the structure
(except those for which the excitation or response DOF is in a nodal position, that is,
where the mode shape is zero). These two modal parameters are therefore called ‘Global
Parameters’. To accurately model the associated mode shape, frequency response meas-
urements must be made over a sufficient number of DOFs to ensure enough detailed
coverage of the structure under test. The extraction of the modal parameters from the
FRFs can be done using a variety of mathematical curve-fitting algorithms. In order to
calibrate (scale) the modal model, the driving-point measurement, the measurement
where the excitation and the response is in the same DOF, needs to be included.

The FRFs are obtained using multi-channel FFT measurements. To arrive at these FRFs,
the excitation force (from either an impact hammer or a shaker provided with a proper
signal) and responding vibrations are measured. The FRFs can be represented in differ-
ent ways depending on the measured response used:

If the vibration response is measured in terms of acceleration, the FRF represents an
accelerance function as it gives the complex ratio of acceleration over force in the
frequency domain

If the vibration response is measured in terms of velocity, the FRF represents a
mobility function

If the vibration response is measured in terms of displacement, the FRF represents
a compliance function

When used for modal analysis, the three measurements contain the same information
and are related to each other via integration or differentiation, which means division
or multiplication by (jo) in the frequency domain, where (o) is the angular frequency.
In general, these types of measurements are referred to as mobility measurements as
the FRFs determine how ‘mobile’ the structure is, i.e., how much vibration response
per input force excitation. For more information on system analysis and FRF measure-
ments see Reference 1.



Fig.1

An example of an
overlay plot
showing the
magnitude of the
three mobility
functions
(accelerance,
mobility and
compliance)
measured on a
mechanical
structure

Fig.1 displays an exam-
ple of the three mobility
functions (accelerance,
mobility and compli-
ance) from a structure.
An accelerometer is used
for the response meas-
urement. The mobility
and the compliance func-
tions are calculated from
the accelerance, by di-
viding by (jo) and -(0)?
respectively. The x- and
y-axes are logarithmic so
that the difference be-
tween the three func-
tions appears in the
slope. The y-axis values
for the three functions
are offset by a factor of 1000 such that the three curves intersect at 159.15Hz (2 7 #159.15
=1000). The units are (m/s?)/N, (m/s)/N and (m)/N, respectively.
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For impact hammer excitation, each accelerometer response DOF is usually fixed and
reflects a reference DOF. The hammer is then moved around the structure and used to
excite every DOF needed in the model.

For shaker excitation, each excitation DOF is usually fixed, reflecting each reference
DOF. The response accelerometer(s), is moved around the different DOFs on the struc-
ture. It must be noted that the effect of the accelerometer(s) being moved around will
give a varying mass loading of the structure, which must be evaluated, and possibly
taken into account in the subsequent modal model extraction (curve-fitting). The var-
ying mass loading will cause varying shifts of the resonance frequencies, which might
or might not be significant depending upon the mass of the accelerometer(s) compared
to the dynamic mass of the structure.

If there are enough accelerometers available, they can be mounted on all the DOFs on
the structure. This gives a larger corresponding mass loading. However, each DOF's
mass loading will subsequently be the same in all the FRFs, providing better consistency
in the data. In addition, if the number of measurement channels allows for measurements
of all responses simultaneously, the measurement time could be minimised and data
consistency maximised.

To avoid mass loading, response measurements can be performed using a Laser Doppler
Vibrometer (single-point) or a Scanning Laser Doppler Vibrometer, which measures
velocity in the direction of the laser beam.

Fig. 2, Fig. 3 and Fig. 4 illustrate a simple example of FRF measurements from which the
modal parameters are extracted. The Briel & Kjeer PULSE™, Multi-analyzer System Type
3560 is used for the measurements. For a basic introduction to modal testing see
Reference 2 and Reference 3.



Fig.2

Magnitude of one
of the accelerance
functions.
Resonance
frequency and
damping is
extracted for the
2nd mode

Fig.3

Waterfall plot of
the imaginary part
of the FRFs
measured along
the beam. The 1st
and the 2nd
bending modes are
shown

Fig.4

The slice extraction
of the second
bending mode
from the waterfall
plot in Fig.3
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Fig. 2, Fig. 3 and Fig. 4 shows an example with 13 FRF measurements on a beam structure
with uncoupled (isolated) modes. Resonance frequency and damping can be extracted
from any FRF where the resonance is present and the mode shapes can be extracted
from the collection of FRFs at the different DOFs. For uncoupled modes, force and
acceleration is 90 degrees out-of-phase at the resonance frequencies, and the peak
amplitudes in the imaginary part of the accelerance FRF (at the resonance frequencies)
gives an unscaled measure of the mode shapes. This is called quadrature picking.



System Response Model

Fig.5

System analysis
using single input
(and single or
multiple outputs).

The relationship between input (force excitation) and output (vibration response) of a
linear system is given by:

Y} = [HI{X} )

where {Y} and {X} are the vectors containing the response spectra and the excitation
spectra, respectively, at the different DOFs in the model, and [H] is the matrix containing
the FRFs between these DOFs.

Equation (1) can also be written as:
Y = ZHijxj (2)
i

where Y; is the output spectrum at DOF i, X; is the input spectrum at DOF j, and Hj; is
the FRF between DOF j and DOF i. The output is the sum of the individual outputs
caused by each of the inputs.

The FRFs are estimated from the measured auto- and cross-spectra of and between
inputs and outputs. Different calculation schemes (estimators) are available in order to
optimise the estimate in the given measurement situation (presence of noise, frequency
resolution, etc...).

Single Input

For the classical case of a single input (see Fig.5), Equation (2) gives the output at any
DOF i, with the input at DOF j, as:

Yi = HjXjoor Hi = Yi/X; (3)
since the input is zero at all the DOFs other than j.
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The FRF H;; can be estimated using the various classical estimators such as:

H; = Gyy/Gxx 4)
or
Hy, = Gyy/Gyx 5)

where Gyx and Gyy are the autospectra of input and output respectively, Gyy is the
cross-spectrum between input and output, and Gyy is the cross-spectrum between
output and input (i.e., the complex conjugate of GXY)l. H, has the ability, by averaging,
to eliminate the influence of uncorrelated noise at the output, whereas H, has the ability,
by averaging, to eliminate the influence of uncorrelated noise at the input. Compared
to H,, H, is less vulnerable to bias errors at the resonance peaks caused by insufficient
frequency resolution (called resolution-bias errors). For detailed information, see
Reference 1.

1 The formulation for cross-spectrum between input and output used here is as follows:
GXY = 1/N Z(X*Y)
where X* is the complex conjugate of the input spectrum and Y is the spectrum of the output and N is the
number of averages (observations). In some literature this is referred to as Gyy



Fig.6

System analysis
using multiple
inputs (and
multiple outputs).

Multiple Inputs

The estimation of the FRFs in the case of multiple inputs (see Fig.6) is a little less
straightforward. For uncorrelated inputs, an estimate of the FRFs is given by:

[H{1T = [Gyy 1 Gyl (6)

where [Gyx] is the matrix of the auto- and cross-spectra of and between the different
input DOFs, []T denotes the transposed matrix, []* denotes the inverse matrix and [Gyy]
is the matrix of the cross-spectra between inputs and outputs. Gyy follows the formu-
lation as given in footnotel. The inversion of the input cross-spectrum matrix requires,
at each frequency of interest, that all the forces are different from zero and that any
pair of forces are not to be fully correlated. This can be verified from the input
autospectra and the ordinary coherence between the inputs.

Uncorrelated signals are provided to the shakers, but due to the coupling between the
shaker systems via the structure, the correlation between the force inputs will never
be zero.
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This estimator, which corresponds to H; in Equation (4), has the ability by averaging,
to eliminate the influence of uncorrelated noise at the output.

Another estimator, called [Hy], is based upon the singular-value decomposition tech-
nique. Hy, can also be calculated in the case of a single input where H,, is the geometrical
mean of H; and H, and its magnitude value is thus bounded by the magnitude of H;
and H, (i.e., [H;l < [Hy| < [H,]). It eliminates, by averaging, the influence of noise,
with the assumption that it has the same signal to noise ratio at both the input and
the output (see Reference 5).

An [H,] estimator, corresponding to H, in Equation (5), can also be formulated, but the
matrix inversion in this case requires that the number of inputs equals the number of
outputs and is, therefore, rarely used.



Requirements for Modal Analysis

Fig.7

Roving hammer
test with a single
response
(reference) DOF

The important question now comes: How many of the FRFs in the matrix [H] (see Equation
(1)) do we need to measure in order to establish the modal model?

The answer to this question will tell us how many auto- and cross-spectra we need to
measure in order to estimate these FRFs (together with other functions, like the coher-
ence functions needed to investigate and validate the measurements). The answer is:
From a theoretical point of view, only one row or one column of the FRF matrix [H] is
required. But, from a practical point of view that is not always sufficient.

Let us look at different test situations.

Single-reference Modal Test

In a number of test cases, FRF measurement data with only one reference DOF, i.e.,
measurement of only one row or one column of [H], contain sufficient information to
extract the modal model. The assumption is that the selected reference DOF contains
information about all the modes, that is to say that the reference DOF is not in a nodal
position for any mode. In practice this means that all the modes should be sufficiently
‘present’ in the FRFs (not buried in other modes or noise) to ensure accurate modal
parameter extraction.

In order to identify a proper reference DOF, some pre-testing often has to be performed.
If a Finite Element Model (FEM) is available this could be used as well. For a (roving)
hammer test, this means that only one response DOF is needed, i.e., only one acceler-
ometer position (point and direction), see Fig.7. This is an example of a Single-Input
Single-Output (SISO) test configuration .
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For a (fixed) shaker test, it means that only one excitation DOF is required, i.e., only
one shaker position (point and direction)l, see Fig.8. If more responses are measured
in each measurement, it is an example of a Single-Input Multiple-Output (SIMO) test
configuration.

In cases where different modes deflect in different orthogonal directions, a reference
DOF with an oblique angle to these directions could be used to ensure sufficient par-
ticipation of all the modes in the reference DOF.

L As discussed earlier, inconsistency in the measured FRFs due to varying mass loading of the accelerome-
ter(s), in cases where the accelerometer has to be moved during the test, must be evaluated and possibly
taken into account in the subsequent curve-fitting. ‘Local’ curve-fitters must be used to allow for local
frequency and damping values.



Fig.8

Fixed shaker test
with a single
excitation
(reference) DOF.
The response
transducer(s) must
be moved around
unless there are as
many transducers
available as there
are response DOFs
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Multi-reference Modal Test

Some test cases require measurements with more than one reference DOF, i.e., meas-
urements of more than one row or more than one column of the FRF matrix [H]. This
is the situation when it is not possible to find a proper reference DOF. The structure
could, for example, exhibit different modes with predominant modal deflections at
different parts of the structure, thus making it impossible to find a DOF where all the
modes have sufficiently high participation for proper modal model extraction. Such
modes are often referred to as local modes. Examples are complex structures composed
of several different parts with different structural properties.

LA AT

Multi-reference testing is also required in cases where the structure has more modes
with the same resonance frequency. This is often referred to as ‘repeated roots’, where
‘roots’ refer to the solutions to the characteristic equation giving the frequency and
damping values of the structure. This is, for example, the case for certain symmetrical
structures. The number of rows or columns measured must be (at least) equal to the
number of modes at the same frequency. Furthermore, the mode shapes that are to be
extracted have to ‘look differently’ in the reference DOFs. That is to say, the mode
shapes for these modes must be linear independent at the reference DOFs. Otherwise,
the added reference DOF(s) does not add ‘more information’ about these modes.

Measuring several rows or columns of the FRF matrix enables calculations of linear
combinations of these rows or columns of FRFs to enhance different modes. The clas-
sical example is a symmetrical structure measured with two reference DOFs at symmet-
rical locations. The sum of the FRFs (sum of the two rows or the two columns) enhances
the symmetrical modes and the difference enhances the anti-symmetrical modes (see
Reference 6).

In the case of a roving hammer test situation, more rows are obtained by including
more response DOFs. In order to optimise data consistency and reduce measurement
time, the response reference DOFs should be measured simultaneously by using more
accelerometers (and more measurement channels), i.e., SIMO. In the cases where dif-
ferent modes deflect in different orthogonal directions, multi-reference measurements
with a triaxial accelerometer (three reference DOFs) can be used instead of, as men-
tioned above, mounting an accelerometer (one reference DOF) at an oblique angle.

Fig.9, and Fig. 10 show an example of a roving hammer test on an |-beam structure. A
triaxial accelerometer, mounted in a corner point, provides three reference DOFs in
orthogonal directions and proper estimation of all the modes is obtained. The
Briiel & Kjeer PULSE™ Multi-analyzer System Type 3560 and Modal Test Consultant Type
7753 are used for generation of geometry and DOF information, making the measure-
ments and validation of these. ME'scopeVES™ from Vibrant Technology, Inc. is used for
the modal analysis post-processing.



Fig.9

A triaxial
accelerometer
providing three
orthogonal
reference DOFsat a
corner point. The
hammer excitation
DOFs are shown as
well

Fig. 10

Left: Mode shape

for the 2nd mode
with predominant,
horizontal modal

deflection

Right: Mode shape
for the 4th mode
with predominant,
vertical modal
deflection

In the case of excitation with one (fixed) shaker, a multi-reference data set could be
acquired simply by measuring one column at a time. A measurement is performed with
the shaker in one position (one reference DOF) followed by a measurement with the
shaker moved to another reference DOF, and so on.

Another, and in many cases a much better, solution is to use more shakers and perform
a Multiple-Input Multiple-Output (MIMO) test.




Fig.11

MIMO shaker test
with two excitation
(reference) DOFs.
The response
transducers must
be roved around
unless there are
sufficient
transducers
available to cover
all the response
DOFs
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Multiple-Input Multiple-Output Modal Test

Multiple-Input Multiple-Output (MIMO) testing is inherently a multi-reference test. More
shakers are used to simultaneously excite the structure at more DOFs, resulting in
measurements of more columns of the frequency response function matrix (see Fig. 11).

With this type of testing,
uncorrelated random
(continuous, burst or
3 " s M . , periodic random) excita-
'i-i tion signals are used.
¥ ; Burst random and peri-
odic random signals
have the ability to pro-
vide leakage-free esti-
mates of the FRFs, i.e., without resolution-bias errors, which is an advantage compared
to continuous random signals (see Reference 1).
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The main advantage of MIMO is that the input-force energy is distributed over more
locations on the structure. This provides a more uniform vibration response over the
structure, especially in cases of large and complex structures and structures with heavy
damping. In order to get sufficient vibration energy into these types of structures, there
is a tendency to ‘overdrive’ the excitation DOF when only a single shaker is used. This
can result in non-linear behaviour and deteriorates the estimation of the FRFs. Excitation
in more locations often also provides a better representation of the excitation forces
that the structure experiences during real-life operation.

Measuring the FRFs from more columns simultaneously provides other key advantages
over sequential column measurements (moving a single shaker between the excitation
DOFs), such as increased consistency in the data set and shorter measurement time.
Data consistency is of paramount importance when multi-reference data are used in
the modal extraction algorithms (polyreference curve-fitting) or when linear combina-
tions of columns are calculated for modal enhancement.

It should be noted that the recognised normal mode testing method (see Reference 7),
is one that uses fixed sine excitation with multiple shakers. One mode is analysed at a
time by tuning the excitation frequency to the resonance frequency and setting the
amplitude and phase of the force signals such that only that mode is being excited (i.e.,
setting the force signals according to the mode shape of the mode).



Examples

Fig. 12

Geometry of a
landing gear
structure and
associated
measurement
DOFs. A MIMO test
with two shakers is
used. Responses in
two directionsin 20
points as well as in
the two reference
DOFs, (a total of 42
DOFs), are
measured.

Fig.13
Driving point FRFs

1

Fig. 14

Multiple coherence
of the driving
points (reference
DOFs)

In the following examples, Briel & Kjeer's PULSE™, Multi-analyzer System Type 3560 and
Modal Test Consultant Type 7753 are used for generation of geometry and DOF infor-
mation, performing the measurements and the validation of these. ME'scopeVES™ from
Vibrant Technology, Inc. is used for the modal analysis post-processing.

Fig. 12 shows an example of a land-
ing gear structure that is tested us-
ing MIMO measurements. Two
shakers are attached at oblique an-
gles in two opposite positions of
the structure in order to ensure
excitation of all the modes. Accel-
eration responses are measured in
two directions in 20 points as well
as in the two reference DOFs, i.e.
a total of 42 DOFs. A multi-refer-
ence hammer test with two
response DOFs is used for prelim-
inary investigations and for selec-
tion of the reference DOFs in the
MIMO test.

Fig. 13, Fig. 14 and Fig.15 show the H; FRF estimates at the driving point DOFs, the
corresponding multiple coherence functions, and the ordinary coherence between the
input forces. The multiple coherence function measures the degree of linear relationship
between an output and all the inputs. Low multiple coherence can be caused by un-
correlated noise, insufficient frequency resolution (resolution-bias errors) or non-linear
behaviour. None of these problems are present in the measurement. The ordinary
coherence between the two forces shows that the forces are sufficiently uncorrelated
at all frequencies to allow for proper calculations of the (MIMO) FRFs (see Equation 6).
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Fig. 15
Ordinarycoherence
between the two
input forces

Fig. 16

Two of the
estimated mode
shapes, at 89 Hz
and 312 Hz
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Two of the estimated mode shapes are shown in Fig.16. The two modes shown, have
predominant modal deflections at different parts (lower part and upper part) of the
structure, each being represented by a reference DOF.

020126

A multi-reference modal test is required for separating the torsional and bending modes
exhibited in the plate structure in Fig.17. A MIMO measurement with two shakers
positioned at two corner points is performed, and uncorrelated random signals are
applied to the shakers. These points are chosen such that the two modes are linearly
independent at the two reference DOFs (modal deflections are in-phase for the bending
mode and out-of-phase for the torsional mode). Responses are measured in 12 DOFs
(12 points in vertical direction) simultaneously.



Fig. 17
Plate structure
which exhibits two
modes (torsional
and bending) at
(almost) the same
frequency.

Fig. 18, Fig. 19, Fig. 20 and Fig.21 show the H; estimate of the FRFs (two columns), the
multiple coherences, the autospectra of the force signals, and the ordinary coherence
between these. The multiple coherence is almost one in the frequency range of the
elastic modes indicating that there are no problems concerning uncorrelated noise,
insufficient frequency resolution (resolution-bias errors) or non-linear behaviour. The
autospectra of the force signals indicates proper excitation force at all frequencies, and
the ordinary coherence shows that the forces are not fully coherent at any frequency
allowing for proper calculations of the (MIMO) FRFs (see Equation 6).
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Inspection of the FRFs (Fig. 18) does not reveal the existence of more modes at the first
resonance peak. A mode indicator function calculated by singular-value composition of
the FRFs indicates two modes at approximately 182 Hz as shown in Fig. 22.
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Fig. 23 shows the estimated mode shapes of these two modes. The estimated frequencies
are 182.2Hz and 182.8 Hz with damping values of 2.75% and 2.83%, respectively.
Fig.23
Mode shapes of the

two modes at
182 Hz (estimated
frequencies of
182.2Hz and
182.8 Hz)

A proper multi-reference test on this structure could also be obtained using a (roving)
hammer test with two accelerometers at the two reference DOFs.
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Conclusion

A brief overview of the different modal analysis techniques based upon input/output
mobility measurements has been given. The advantages of the different techniques and
the practical aspects of when they could or should be applied has been discussed.
Multi-reference modal testing is required in situations where a single-reference DOF
featuring sufficient participation of all modes cannot be found, or where more modes
exist at the same frequency. Multiple-Input Multiple-Output (MIMOQ) testing provides
better distribution of the input force energy, which is especially important for large,
complex and heavily damped structures. Additionally, it gives advantages in terms of
improved consistency in the data and reduced test time.
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