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Dynamic design verification
of a prototype rapid transit train

Abstract

The purpose of the modal test was
primarily to verify the natural fre-
quency of the first vertical bending
mode for a new train car design.

Measurements were made on two
prototype cars plus two similar cars of
an older type.

Introduction

The design and construction of
modern mechanical structures is in
many cases a process of putting to-
cgether a set of individually optimized
components, and rarely results in an
optimal solution.

A typical example is vehicle design.
Improved static design tools, imple-
mented on digital computers, have re-
sulted 1n lighter structures carrying

using Modal Analysis
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Based on the modal model, the sen-
sitivity of the 1°" bending mode to an
assumed excitation was estimated,
and compared between the four cars.

The change in frequency for the 1°
bending mode due to adding payload
(passengers) was then predicted by
simulation.

more payload. Improved materials
have also led to lighter constructions,
which together with increased propul-
sion power and sharpened require-
ments with respect to the environ-
ment, reliability etc., inherently con-
tain potential ergonomic problems in
terms of fatigue, noise and vibration.

The need for dynamic consider-
ations during the design stage was rec-

This Application Note presents the
use of Modal Analysis, by the FRF
method, to verify the dynamic design
of a prototype rapid transit train, with
a brief review of the theory of Modal
Analysis as an Appendix.

ognised rather early for rotor designs.
Here, critical speed problems experi-
enced during turbine operation and
gun barrel drilling, together with tor-
sional vibration problems in recipro-
cating engines, led to the development
of schemes for safe dynamic designs.

Today, more and more products are
designed using an integrated process.
Many types of mechanical devices and
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Fig. 1. Rapid Transit Train Type FC car illustrating the

15t bending mode



structures which are expected to be
subjected to dynamic forces are de-
signed using dynamic modelling. Some
examples are:

— aircraft and spacecraft

— automobiles and trains

— ships and offshore structures

— buildings, dams and nuclear
reactors

— engine parts

— business machines and disc
drives

— Sporting equipment

— household appliances

Besides being used for design pur-
poses, systems can also be modelled to
olve improved understanding and to
allow simulation.

The modelling of systems 1s general-
ly accomplished by assuming linearity

Background

Modal Analysis 1s the process of de-
termining the modes of vibration. In
mathematical terms, the modes of vi-
bration are the eigenvalues and eigen-
vectors of the system equations. In
physical terms, the modes represent

and establishing a set of differential
equations. These equations can be
solved mathematically to yield the in-
herent dynamic characteristics or the
system response to assumed external
forces and boundary conditions. For
mechanical systems, the analytical
model 1s 1mplemented in one of 3
ways:

® Continuous Model.

— using wave equations with
boundary conditions. Not appli-
cable for practical complex
structures

® [.umped parameter Model.
— using a very coarse parameter
description of idealised discrete
elements

the natural frequencies together with
the associated deformation shapes.

The natural frequency, together
with the damping and mode shape for
cach mode constitute the modal pa-

® Finite Element Model.
— using a detailed parameter de-
scription of continuous elements

The last two principles have heen
computerised, and are very useful in
early design stages. The resulting
model may In turn be used for static
analyses, Modal Analysis and for the
simulation of response.

As an alternative to the analytical
modelling, mathematical models can
also be created based on experimental
Modal Analysis, vielding:

® Modal Model.

— using modal parameters; fre-
quency, damping and mode
shape

rameters. T'hese parameters repre-
sent a complete dynamic description
of the structure.

Knowledge of the modal parameters
1s by itself very useful since 1t shows at
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Fig. 2. Part of a typical instrument configuration used for Normal Mode Testing



which frequencies the structure can be
excited to resonance. The associated
mode shape represents the relative de-
flections over the structure. This in-
formation is often sufficient to suggest
structural modifications which will
change the dynamic behaviour in a de-
sired direction.

From the modal parameters, a
mathematical model for the structure
can be created. This model consists of
a set of independent equations of mo-
tion, each resembling a Single Degree
of Freedom (SDOF) system, which in

turn can be solved without difficulty.

Apart from the analytical approach-
es, Modal Analysis can also be accom-
plished experimentally. Basically two

somewhat different methods are avail-
able;

® Normal Mode Testing (NMT)

® [requency Response Function
Method (FRF Method)

For both methods the structure is
stimulated by a measurable force or
forces, and the resulting response ob-
served and related.

Normal Mode Testing

Using NMT, one mode at a time is
1solated and the associated modal pa-
rameters determined. A number of vi-

bration exciters are distributed over
the structure which simultaneously
provide excitation forces, and the ex-
citation wave form is sinusoidal. The
isolation of a single mode is achieved
when the excitation force vector 1is
proportional to the modal deflection
for that particular mode. Fig. 2 shows
a simplified instrumentation set-up.

The problem with NMT is of a
“Catch 22” nature: one needs to know
the answer before the question can be
asked! A priori knowledge from calcu-
lations, or engineering intuition, plus
an iterative process does lead to an
efficient isolation of each single mode.
When a single mode is tuned-in, the
system behaves as a Single Degree of
Freedom (SDOF) system. The mode
shape 1s determined by measuring the
response over the structure, usually by
using a large number of accelero-
meters.

The undamped natural frequency
1s found at the maximum response,
and the damping determined from
the free decay when all the exciters
are simultaneously switched off.

Alternatively, using the appropriate
force distribution, a “Tuned Sweep” 1is
performed. The quadrature versus co-
incident response is plotted (Nyquist
plot), and the frequency, damping and
amplitude determined graphically.

Rapid Transit Train Modal Testing

The NM'T technique requires a high
degree of skill (and art) and a large
number of sophisticated instruments.
The method produces very accurate
results even for large complicated
structures with many closely coupled
modes e.g. aircraft.

The Frequency Response Func-
tion Method

Using the FRF method, the struc-
ture can be excited by an arbitrary
waveform containing energy distribut-
ed over the whole frequency range of
interest (broad band testing). All the
modes are excited simultaneously and
contribute to the observed response.
The Frequency Response Function is
the complex ratio between the re-
sponse and excitation spectra.

An FRF 1s measured at all the
points and in all the directions of in-
terest. The measurements need not be
made simultaneously, and are general-
ly performed sequentially. With the
advent of 3rd and 4th generation
Dual-Channel FFT Analyzers and
powerful computer programs, with
very user-friendly interfaces, the FRF
method has become increasingly pop-
ular due to shorter test times and rea-
sonably priced equipment. This meth-
od is now adopted throughout indus-
try and research institutions.

841238

Fig. 3. FC type car showing the measurement points




Purpose and Scope

The purpose of the modal test was
primarily to verify the natural fre-
quency of the first vertical bending
mode for a new train car design.

As the modal density of a train car
is high, it was necessary to identify a
number of modes around the 1% bend-
ing mode to secure correct
identification.

Dynamic Design Criterion

The major source of vertical excita-
tion of a train car 1s a combination of
the elasticity of the rail, non uniformi-
ties in the track surface, and the dis-
continuity of the rail joints. This exci-
tation i1s rather broad banded, but the

Testing Procedure

Measuring Object
All the four train cars considered
are very similar, and are:

1. FC new Driving trailer, 34,5 ton
2. MC new Motor coach, 46,3 ton
3. FS old Driving trailer, 27,8 ton
4. MU old Motor coach, 42,8 ton

Builders: Scandia-Randers Ltd.,
Denmark

Owners: DSB (Danish National
Railroads)

Consultants: degaard and Dannes-

kiold-Samsoe K/S

Fig.3 shows a type FC train car.

bogle suspension system 1s designed to
yvield an efficient isolation at frequen-
cies higher than 8—10 Hz, and to con-
trol the rigid body motions. However,
impacts and irregularities in the rail
track do create forces at higher fre-
quencies exciting the elastic motion of
the car. This excitation can be seen as
a symmetric force distribution enter-
ing the carriage through the bogie
connections.

If the wheels are not perfectly
round, some excitation at the wheel
frequency (= 10 Hz) and at the higher
harmonics can be expected.

A pure, symmetric excitation can
only excite symmetric modes (an illus-

Measurement Condition

The measurements were accom-
plished with the vehicles placed on
rails in the DSB maintenance shop,
Taastrup, Denmark. The cars were
fully outfitted, but without payload.

Measurement Positions

In order to make an accurate 1denti-
fication and to obtain a useful dynam-
ic modal model, a relatively high num-
ber of measuring points were chosen
(see Fig.3). Since the purpose was to
identify the 1% bending mode, mea-
surements were made in the vertical
direction only.

Instrumentation
Fig.4 shows the instrumentation.

tration explaining this statement is
given in Fig. 9). Thus the lowest sym-
metric elastic mode of the carriage,
the 1% bending mode constitutes the
primary elastic contribution to the dy-
namic behaviour of the car.

In this case the design criterion is
that the natural frequency for the 1%

bending mode should be higher than
10 Hz.

The calculations for the car were
rather simplified, and based on the

“Redundant Frame Method” (Biech,
1924).

The numbers refer to B & K products.
Further details of these products are
egiven 1 Ref. [7].

Excitation

Due to the anticipated non-linear
behaviour of the suspension system,
Random Noise was chosen as the exci-
tation waveform since this gives the
best linear approximation for non lin-
ear systems ( Ref.[1]).

The waveform was generated by the
Dual Channel Signal Analyzer Type
2032, producing a flat spectrum with a
frequency distribution limited to the
selected measurement range.
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Fig. 4. The instrument set-up used to make the measurements and Modal Analysis




The random force was implemented
by feeding the generator signal to the
Power Amplifier Type 2707, driving
the Vibration Exciter Type 4801 fitted
with Exciter Head Type 4814. Con-
nection to the structure was by a
stinger, a thin (@ 3 mm) nylon rod,
axially stiff and laterally flexible. The
purpose of a stinger is to prevent rota-
tional and lateral coupling between
the exciter and structure. The force
input to the car was measured by the
Force Transducer Type 8200, screwed
directly into the structure.

The Excitation DOF" was chosen as
a point at one corner of the car and
applied in the vertical direction. The
usymmetric excitation position en-
sured that all modes were excited.

Response

The wvibration response was mea-
sured using a Piezoelectric Accelerom-
eter Type 4381. The accelerometer
was mounted using the magnet
UA 0642. The magnet, applied at a
smooth surface provided a rapid and,
for the frequency range, good
mounting.

Signal Analysis
The transducer signals were condi-
tioned 1n the Charge Amplifiers Type

FRE-Measurement

The measurements were accom-
plished during normal working hours
in the maintenance shop. The activity
in the shop created some mechanical

background noise at the output. Se-
lecting the FRF estimator (Ref.[1]),

B Gxp
Grp
where Gy 1s the average Cross Spec-
trum between response and
excitation

Gpp 1s the Autospectrum of the
excitation

H,

and employing an appropriate number
of averages, the influence from the
background noise was removed.

Fig.6 shows an example of a mea-
sured FRF together with the Coher-
ence Function. The Coherence Func-
tion implies a very good linear rela-
tionship between the response accel-
eration and the excitation force in the
full frequency range. The observed
drops in coherence at low frequencies
are explained by the low excitation
force 1n this range, giving a low signal-
to-noise ratio, and from the expected
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Fig. 5. Excitation Spectrum with measurement parameters as displayed by the Dual Chan-

nel Signal Analyzer Type 2032

2635 and fed to the Dual Channel Sig-
nal Analyzer Type 2032.

The measurement frequency range
was 0 to 50 Hz. The 801 line transfor-
mation gave a frequency resolution of

0,0625 Hz.

First the force spectrum was
checked. Fig.5 shows the excitation
spectrum together with all the mea-
surement parameters of the analysis.
The spectrum is flat from approx. 2.5
to 50 Hz. The force level achieved by
the setup was approx. 200 N RMS.
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Fig. 6. Measured FRF and Coherence Function as displayed by the Dual Channel Signal

Analyzer Type 2032

non-linear behaviour of the suspen-
sion system.

Drops in coherence at the antireson-
ances were expected, as antireson-

* DOF = Degree of Freedom, 1s motion at a
point 1n a particular direction.




ances represent frequencies at which a
structure does not response to excita-
tion, giving a very poor signal-to-noise
ratio.

Data Aguisition

An FRF measurement was made for
each specific DOF. The accelerometer
was sequentially mounted, and 250
spectra with 75% overlapping were
averaged together. After completion of
the averaging, the FRF was trans-
ferred to the computer, iabelled (with
DOFs, time, etc.), and stored on a 51/4”
floppy disc. A number of measure-
ments, together with complete mea-
surement documentation, were
dumped to the Digital Cassette Re-
corder Type 7400 for reference and
security.

Modal Analysis

For data management, modal pa-
rameter estimation, mode shape ani-
mation and documentation, the
Briiel & Kjzer Structural Analysis Sys-
tem Type W'T 9100 was used, installed
in a HP 9836 computer (Ref. [5]).

Parameter Estimation

The modal parameter estimation
was done by curve fitting. First one
typical FRF measurement was re-
called and displayed on the computer
screen.

A frequency band around each
mode was then specified by a cursor
pair. The curve fitting method was se-
lected and the modal parameters were
estimated by the system. Based on the
estimated parameters an FRF in the
cursor band was synthesized and dis-
played together with the measured
FRF for evaluation of the fit.

While the typical FRF measure-
ment was being fitted, an AUTOFIT
table was automatically updated. Fig.7
shows an FRF measurement together
with a synthesis. An AUTOFIT table,
specifying the curve fitting bands and
procedures, is shown in Table 1.

By entering an AUTOFIT com-
mand all FRF measurements are auto-
matically recalled to the computer,
and the modal parameters are esti-
mated based on the AUTOFIT table
specifications. The result 1s a com-
plete set of modal parameters.

Documentation

The system provides a wide variety
of documentation facilities. The most
powerful of these is the real time
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Fig. 7. Plot of the measured FRFE and synthesized FRF (dotted line)

MODE LOW CURSOR HIGH CURSOR FIT METHOD

1,6 +2

0,94

6,94

MDOF-LSCEXP

9,5

11,13

SDOF-POLY

12,06

14,75

o o

MDOF-LSCEXP

16,94

Table 1. AUTOFIT table for car no. 1

SDOF-POLY

T0G532GE0

Frequency Damping

=Wd/9. =0/2x

(Hz) (Hz)

1 1,43 4,58 0,07

2 B 2,76 5,64 0,16

3 | 3,34 4,93 0,16

4 | 4,34 5,21 0,23

5 | 5,39 | 2,27 0,12

6 6,58 1 5,27 0,35

7 10,36 J 1,97 0,16

8 13,12 ‘ 2,04 0,27

9 14,05 3,41 0,48

10 16,04 2,26 0,36
T00531GB0

Table 2. Frequency and damping for the first ten modes of car no.lI
Results

mode shape animation. Here the For train car no.l, Table 2 shows

graphics computer display animates
the modes of vibration in slow motion.
Printer/plotter outputs are also
avatlable.

the frequency and damping for 10
modes of vibration. A number of the
mode shapes are shown in Fig.8. Iden-
tification of 1** bending mode is now



Undeformed Structure

Mode # 1 Roll

Mode # 2 Heave

Mode # 3 Pitch

841317

rather obvious. The frequencies and

damping for this mode are shown in
Table 3 for the four cars.

Conclusion

The primary purpose of the modal
test was to identify the 1% vertical
bending mode, which was well accom-
plished. The results show that the de-
sign criterion — Natural frequency of

the first bending mode shall be greater
than 10 Hz — 1s achieved.

Beyond the primary task, a number
of the higher elastic modes were also
identified. Due to non-linearities the
rigid body modes were identified with
some difficuity. For a linear system a
mode shape 1s a free vibration proper-
ty and is independent of the excitation
position. The non-linear etfects
showed up as distorted mode shapes
where the deflections seems highest
around the excitation point.

Advanced Applications

Bending Mode Sensitivity

The result of the Modal Analysis
can be used for a closer inspection of
the properties of the 1% bending mode
for the individual cars.

TO0L33GE0

Table 3. Frequencies and damping for the first bending mode of the 4 cars

Generalized Coordinates

The most important property of the
mode shapes 1s their mutual orthogo-
nality. This property 1s used 1n a lin-
ear transformation, the Modal
Transtormation:

X3 = [@] tal 1]

where {x} are the displacements in
physical coordinates

{g} are the generalized
coordinates
(0] = [{o}: 1o}, {Ofm] 1s

the modal matrix where the
columns are the mode shapes

Using the modal transformation,
the equations of motion become un-
coupled, and the number of coordi-
nates 1s reduced to the number of
modes.

Now we want to study the proper-
ties of the 1** bending mode, and the
problem can be reduced to a single
DOF system.

By only considering the 1% bending
mode we can examine the car in gener-
alized coordinates using the associated
mode shape for a transformation.

ix} = {$}, - q 2]

where {x} 1is the physical coordinate
{d}. is the mode shape scaled
to unit modal mass
q, 18 the generalized
coordinate

and the equation of motion is:

q,(t) + 20, q,(t) + w,," q,(t) = Q, [3]




is the decay rate repre-

senting damping

Wy 18 the undamped natural
frequency

QQ 18 the generalized force

where o

All the parameters in this equation

of motion represent the output from
the Modal Analysis.

Generalized Force
The transformed excitation forces are
the Generalized Force:

Q = {¢}7{f} = > £ []
1=1

where {¢}._ is the r'® mode shape
{f} 1is the excitation force
vector

The Generalized Force Q, has a very
simple physical interpretation, since it
expresses the ability of a given force
vector {f} to excite a particular mode

Q5+

It we assume that the vertical exci-
tation forces on the car are symmetri-
cally distributed, we may graphically
evaluate the Generalized Force (Fig.
9), demonstrating that asymmetric
modes cannot be excited by symmetric
excitation as the Generalized Force
becomes zero.

To compare the 1*' bending mode
sensitivity for the four cars we can
calculate the Generalized Force. As-
suming an arbritarily chosen force
vector of 1000 N at each of 4 DOFs
around each bogie/car connection
(outlined by double circles in Fig. 3),
the results are shown in Table 4.

Car no. Generalized Force (N)

T00536GBO0
Table 4. Generalized Forces for the 4 cars

Generalized Response

The generalized response to an ac-
tual excitation is calculated by trans-
forming to the frequency domain:

Q(w)
= O
A — W H2jow+wy’ ol

where q(w) is the spectrum of the dis-
placement in the modal
coordinate,
Q(w)1is the spectrum of the
Generalized Force.
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Fig. 9. Generalized Forces for both symmetric and asymmetric modes using symmetric

excitation

If we assume a 10 Hz harmonic exci-
tation (corresponding to the wheel fre-
quency) with the same force distribu-
tion as given above, we can calculate
the modal or generalized response.
The results are shown 1n Table 5.

Modal Response
Magnitude (mm)

q(10 Hz) = 13,30 x 10°¢

q(10 Hz) = 1,8x107°

q(10Hz) = 1,78 x 1074

q(10 Hz) = 8,48 x 1077

T00564GB0

Table 5. Generalized or Modal response for
10 Hz excitation

Discussion

Comparison of the dynamic proper-
ties of the four cars with respect to an
assumed excitation can be based on
the Generalized Force and the gener-
alized response for the 1st bending
mode. From this, it appears that the
new motor coach is less sensitive than
the old type. The new driving trailer
appears to be more sensitive than the
old design. This is particularly the
case with respect to the wheel fre-
quency excitation due to a lower natu-

ral frequency and damping. However,

the damping is significantly underesti-
mated due to the bogie damper ad-
justments and due to the non-linear
damping mechanism.

Physical Response

When we have calculated the re-
sponse (displacement) in modal coor-
dinates, the results can be trans-
formed back to physical coordinates
using equation [1].

In our example, where we only con-
sider one mode, the transformation is
reduced to [2].

The interpretation is that the physi-
cal deformation is equal to the mode
shape multiplied by the generalized
response. Alternatively, that the re-
sponse at a specific point 1s equal to
the modal deflection at that point
times the generalized response:

X = q{)ir " [6]

Damping

For the response estimation [5], the
damping term is included. The modal
damping 1s generally the least accu-
rately estimated modal parameter.

Looking at the modal damping for
the 1% bending mode for the four cars
we observe a relatively high difference
in damping. This difference can be ex-
plained from the mode shapes and
boundary conditions.



As the 1% bending mode frequency
is three times higher than the highest
rigid body mode, the car may be con-
sidered as a free/free bheam. However,
the node points for this mode are not
at the support points, thus damping
forces are introduced {from the
suUsSpension.

The damping force depends on :
® mode shape
® bogie design/condition

® vibration level (non linear)

Simulation of Loading the Train with Passengers

Structural Dynamics Modifica-
tion

When the trains are 1n operation,
and loaded with passengers, the dy-
namic characteristics will change.

The dynamic modification can be
simulated using the modal parame-
ters.

The equation of motion can be writ-
ten:

[m}ix§ + [c]ix} + [k]ix] = {f} [7]

where the vectors;
ixt, 1x}, {¥} are the displace-
ment, velocity and acceleration
over the structure

and the matrices;
im], [cl, [k] are the spatial parame-
ters representing the mass, damp-
ing and stiffness in the structure

Equation [7] represents a set of sec-
ond order differential equations. The
spatial parameters are unknown and
cannot be measured in the experimen-
tal analysis. Using the modal transfor-
mation [l], the equations are uncou-
pled in the generalized coordinates.

By also using a specific scaling of
the mode shapes - Unit Modal Mass
Scaling:

[¢]" [m][¢] = [1]

the equation of motion reduces to:

[1dtds +[ 20 Jiq}

with the advantages that:

® the equations are uncoupled and
may be solved individually

® all the parameters can be measured
through Modal Analysis

® the number of unknowns is re-
duced to the number of modes

Introducing modifications to the
system parameters; [Am], [Ac] or [AKk],
these modifications are transformed
to generalized coordinates by:

[$]'[A][]

and added to the original coefficient
matrix in equation [8]. The eigenvalue
solution to the new equation yields the
new frequencies, damping and mode
shapes.

The two last terms were not con-
trolled during the test, and thus
damping deviation must be expected.

As an example, an addition of
masses [Am] to a system can be simu-
lated by solving the determinant
equation:

[L1] + (@1 [am) [¢)] 7
+120]s+ ][ =0 [9]

Equation [9] represents a polynomi-
al in s of the order 2-m, where m 1s the
number of modes. The roots of the
polynomial represent the new natural
frequencies and damping.

MODIFICATION HISTORY

Type Amount
1 mass 14,00 Kg 1
2 mass 280,00 kg | 2
3 mass 280,00 kg | 3
4 mass 280,00 kg | 4
S mass 280,00 kg - 5
6 - mass 280,00 kg | 6
7 | r mass 280,00 kg | /
8 mass 280,00 kg | 8
) 9 ] mass 140,00 kg - 9
10 | mass 140,00 kg 10
11 mass 280,00 kg 11
12 mass 280,00 kg | 12
13 mass 280,00 kg | 13
|
14 Mass 280,00 kg 14
15 - —_ mass 280,00 kg | 15
16 | mass 280,00 kg | 16
i
17 mass 280,00 kg 17
18 | mass 140,00 kg N 18
= 4480 kg

Table 6. The modification history

TO0537GB0
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Substituting each root p:

[+ [617m] (9] p?
+1201p +twi]]fa@)} =0 [10]

yields the solution vector {q},, which
represents the new mode shape. The
modal coordinates used to calculate
this new mode shape are then trans-
formed to physical coordinates using
equation [1].

In the SAS 3.0/ WT 9100 software
package, the subset SDM 3.0 simu-
lates mass, damping and stiffness
modifications using this technique.

The computational time for a modi-
fication simulation is typically 10 sec-
onds.

Conclusion

This Application Note shows an ex-
ample of the experimental dynamic
analysis of a complex structure, with
user-friendly, integrated instrumenta-
tion.

Time consumption was four hours
for set-up and trial measurements, fol-

Appendix

Introduction to Modal Analysis

This appendix presents an intuitive
rather than mathematical introduc-
tion to the theory of Modal Analysis.

Modal Behaviour

The dynamic response of a struc-
ture, caused by an arbitrary forcing
function, is the sum of a discrete set of
independent, well defined motions
(Fig. 10a). These motions are the
modes, and each mode is described

by:
® The mode shape
® The modal frequency
® The modal damping
Each mode shape describes the rela-
tive deflections over the structure. A

mode shape may be classified as nor-
mal or complex. For a normal mode
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Frequency shift
(Hz)

0,28

0,34

0,45

0,41

T00535GB0

Table 7. Predicted frequency shifts derived by simulating structural modifications

With the purpose of predicting the
shift in frequency of the 1°' bending
mode, a structural dynamic modifica-
tion was simulated. 70 kg of mass was
assumed at each passenger seat. The
masses were distributed to the mea-
sured DOFs as shown by the modifica-
tion history in Table 6. The predicted

lowed by three hours for each of the
four train cars tested.

The analysis verified the dynamic
design of the prototype rapid transit
trains, and produced a mathematical
model of the structure. This model
was employed both for estimating the

shape, all the points are moving either
in phase, or 180° out of phase. This
means that all the points are arriving
at maximum deflections, or passing
the undeformed state, simultaneously.
The normal mode may be considered
as a standing wave in a structure.

Normal modes are generally found
In structures with either evenly dis-
tributed or low damping. Structures
with either high or unevenly distribut-
ed damping often exhibit complex
modes.

For the complex mode, the phase
between motions over the structure
may be arbitrary. The complex mode
shape behaves more like a propogating
wave, and nodes are not stationary.

For a continuous structure, a mode
shape 1s a continuous spatial function
(Fig. 10b). It i1s generally discretely

frequency shifts for each train car are
shown inTable 7.

Even though the predicted frequen-
cy shifts are rather small, it can be
seen that for car no. 1, the new driving
trailer, the frequency of the 1% bend-
ing mode 1s approaching the critical
10 Hz design criterion.

vertical bending sensitivity to as-
sumed excitation, and for predicting
what effects loading the cars with pas-
sengers has on the dynamic proper-
ties.

sampled and is presented and treated
as a vector {{/}. The mode shape vec-
tor contains the modal deflection at
selected points and directions ;.

The modal frequencies and damp-
ing have been given various names:
roots, eigenvalues, pole location, reso-
nance, natural frequency, etc. A very
convenient way to communicate mod-
al frequency and damping is by the
pole location:

p — 0 +jWwy [11]
where p 1s a complex number (com-
plex eigenvalue) composed of a real
part,

o = (w [12]

representing the decay rate o of the
free vibration, and equal to the frac-
tion of critical damping ( times w, the




undamped natural frequency. ¢ also
represents half of the 3dB bandwidth
of the resonance in the frequency do-
main.

The imaginary part of p,

wy = wVl = {* [13]

is the damped natural frequency, and
represents the oscillation frequency of
the free vibration, as well as the fre-
quency at which the system can be
excited to resonance (Fig .10c¢).

The set of mode shapes and the pole
locations, the modal parameters,
constitute a complete dynamic de-
scription of a structure.

A continuous structure has an infi-
nite number of modes. For the dynam-
1c description, a truncated model con-
taining only the modes present in the
frequency band of interest can be used
and gives sufficient accuracy.

Modal Analysis is the process of de-
termining the modal parameters.

The Frequency Response Function

In experimental Modal Analysis,
measurements of the input/output re-
lations are made. Today the most con-
venient input/output measurement Is

the Frequency Response Function
(FRF).

The FRF 1s by definition the com-
plex ratio between the output spec-
trum, measured in DOF 1, and the
excitation spectrum in DOF j:

H (w) = 2w (14)
| Fj(w)

The FRF has two indices identify-
ing the response and excitation DOF.
It is a function of frequency w and is
complex 1.e. it has a real and imagi-
nary part (or magnitude and phase).

FRFs are properties of linear systems
which:

® do not depend on the type of exci-
tation,

® can be measured with sinusoidal,
random or transient excitation,

® if obtained with one type of excita-
tion can thus be used to predict the
system response to any other type
of excitation,

® can be decomposed into the modal
parameters.
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Frg. 10. Modal behaviour
FRF Measurements |Gx1«*(f)|2

The definition of the FRF implies YL = [16]

that we only need to excite the system
by a measurable force, measure the
assoclated response, make transforma-
tions to the frequency domain, and
calculate the ratio between the two
spectra.

In real measurement situations it 1s
not possible to measure the true input
and output due to noise. By the term
noise we include:

— mechanical background noise
— ambient excitation

— electrical noise 1n the transduc-
Ing system

— data acquisition noise
— computational noise
— non-linearities, etc.

Due to the contaminating noise 1n
our data we have to define an estima-
tor for the FRF. Ref. [1] discusses, 1n
detail, the measurement techniques
and the estimates for the FRF. These
estimates are based on the measure-
ment of the Cross Spectrum Gy and
one Autospectrum from the response
Gyx or the excitation Gyy.

H, (f) = Gyp(f) or H,(f) = Gxx(f) 15]

Grp(f)  Gex(D)

Another useful function based on
the same spectra may be calculated;

Gyx (D) Gpp(l)

which 1s the Coherence Function. The
Coherence Function expresses the lin-
ear relation between response and ex-
citation, and is used for evaluating the
quality of the measurements. Once
again Ref. [1] discusses the Coherence
Function in detail.

Alternative Formats

>So far we have only discussed FRFs
in terms of response and excitation.
Dynamic response can be expressed in
terms of displacement, velocity or ac-
celeration. As a result, the FRF can be
in three different formats:

Compliance:
_ X(w)
2= R
Mobility: |
M(w) = )F(((:j)) - H(w)-jw
Accelerance: )
_ Xw) _ 0
A(w) Flw) - H{(w) - (- w?)

Having measured one of the re-
sponse functions the others may be
calculated. Today most FFT analyzers
provide this facility. Currently it 1s the

*DOVF = Degree of Freedom, 1s motion at a
point 1n a particular direction.
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measurement of Accelerance which is
most popular due to the convenient
application of accelerometers. For an-
alytical work, modelling, and curve-
fitting Compliance 1s normally used.
The previously so popular Mobility 1s
now rarely used for Modal Analysis.

The FRF and Modal Parameters

Analytically the FRF can be decom-
posed 1nto modal parameters, and
from a measured FRF the modal pa-
rameters may be estimated.

Modal Frequency and Damping

The pole location, i.e. the damping
and damped natural frequency, are
represented by the resonance frequen-
cy and the bandwidth of the resonance
peak (see FKig. 10c¢).

The pole locations are global prop-
erties, i.e. they can be measured any-
where on the structure.

Mode Shape

If we assume low coupling between
the modes (1.e. sufficient frequency
spacing compared to the width), we
can make an 1intuitional interpreta-
tion:

The FRF, H;(w) generally repre-
sents the deflection at 1 per unit force
at . At the resonance for the r*" mode
the contribution from the other modes
is negligible, and now H;(wy,) repre-
sents the modal deflection in 1 per unit

force in 7 for mode r alone (see
Fig. 11).

Either one response, or one excita-
tion DOF 1s chosen as a reference.
FRFs are measured at all DOFs of
interest. Now, the set of H-values
measured over the structure for each
resonance represent the associated
mode shape. Fig. 12 shows a set of
FRFs measured along a cantilever
beam. The imaginary amplitude of the
H along the three resonant frequen-
cies forms the mode shapes.

The mathematical model created
from the experimental Modal Analysis
may have a number of advantages
over the pure analytical model based
on spaclal parameters:

® generally has many less indepen-

dent variables than the number of
measured DOFs

® cxpresses the true boundary condi-
tions

® is easily verified
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Fj (w)

By definition H; (w) =

» X {w)
XI — H” F]
or
X =[H] F
X
() ol
841063

Fig. 11. The FRF and response model
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Fig. 12, Hlustration of the mode shapes as derived from FRFs

FRF — Model
Analytically a general model for the
compliance function 1s:

- Ri;r Rijr
Hjj(w) = Z —+ : — [17]

r = 1 jw—pl‘ jw—pr

where Rijr = kr'ﬁbir'(i)jr
1s the residue

* indicates the complex
conjugate

T 1s the mode 1ndex

i is the response index

j is the excitation index

p = -0+ )Wy

1s the pole location rep-
resenting natural fre-
quency and damping
m is the number of modes
¢.. 18 the scaled modal de-
flection in 1 for mode r
k is a scaling factor

For a system with only a single de-

ogree of freedom this model reduces to:

R R

H(w) = - + - - [18]

JW—Dp JW—p

These parametric forms of the FRF

contain only measurable modal pa-
rameters.

*

All the modal parameters may be
convenlently assembled in two matri-
ces:

Modal Matrix;
(P] = [{0}, {0} ...

Spectral Matrix:
[pl=1[-0, + Jwg]

Q)

where o 1s the decay rate, represent-
ing the damping
wq 18 the damped natural

frequency




The dimensions of these matrices
are for [P]: n X m and for [p] m,
where n 1s the number of DOFs and m
is the number of modes. As the spec-
tral matrix 1s diagonal, only m pole
locations are contained.

Curve Fitting

Having measured an FRF, the mod-
els given 1n equations [13] and [14] can
be used for estimating the modal pa-
rameters.

FEach measured Frequency Re-
sponse Function contains a very large
amount of data. The B&K Dual
Channel Signal Analyzers Types 2032
and 2034 give 801 complex numbers.

For each mode of vibration we need
only identify two parameters: the pole
location and the Residue.

This implies that we have a lot of
redundant data available in the mea-
surements. These data can be utilized
by a curve fitting technique where, in
a least squares sense, all observations
are included to give the best estimate.

For a lightly coupled system, the
single DO¥ model [18] can be used in a
frequency band around each reso-
nance, using between 10 and 200 val-
ues of H to estimate the two parame-

If the structure exhibits FRFs with
coupled modes, the modal parameters
have to be estimated simultaneously

using the multi-DOF model [17].

A high number of different estima-
tion, or curve fitting techniques are
available, but in general they are all
based on the L.east Squares principle.
For  parameter estimation  see

Rets. [2-4]

Dynamic Models

Dynamic mathematical models of
mechanical structures are needed and
extensively used in Structural Analy-
sis. Simulations may be made:

® For predicting structural response
from assumed external forces, with
the purpose of evaluating the quality
of the design.

® For predicting the dynamic effect
of structural changes from mechanical
improvements, adding pay load, cou-
pling of substructures, etc.

The ultimative goal of Modal Anal-
ysis 18 to create a mathematical dy-
namic model representing the real
structure.

In analytical analysis a time domain
model may be formulated based on

and damping matrices, see Fig.13a.
The model consists of a set of simulta-
neous differential equations.

Transformation to the frequency or
Laplace domain reduces the problem
to a set of algebraic equations. The
eigenvalues and eigenvector for the
system matrix [B] (Fig. 13b) represent
the modal parameters.

In practice, Modal Analysis vields a
frequency domain model directly

(Fig. 13¢).

Using the modal matrix [®] a modal
transformation is defined (Fig. 13d):

ixt =[P] {q} (19]

{x} represents the deflections Iin
physical coordinates and {g! 1s the
deflection in a system of modal coordi-
nates. The number of DOFs 1n these
oeneralized coordinates is reduced to
the number of modes.

Using the modal transformation the
equation of motion can be expressed
in an uncoupled form (Fig. 13), based
on modal parameters.

This means that a time domain as
well as a frequency domain mathemat-
1cal model can be constructed based

ters R and p for each mode at a time. spacial parameters: mass, stiffness on measured modal parameters.
Spatial Parameters Modal Parameters
[m]{x(t)} + [c]ix(th} + [k]{x(D)} = {f(1)] Fliamt + 2o Jiat + Tel ] fa)) = [ @] {f(h]

Time Domain

X = physical coordinates

a)
£ ix()
Frequency
or
Lapiace Domain
[F(s)} = [B(s)]{X(s)}
B(s)| = [[m]s? + [c]s + [K]]
D)

q = modal c¢coordinates

841234

Fig. 13. Mathematical interrelation between Spacial Parameters and Modal Parameters for both the Time and Frequency domains
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