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INTRODUCTION 

Cepstrum Analysis is a tool for the detection of periodicity in a frequency spectrum, and seems so far 
to have been used mainly in speech analysis for voice pitch determination and related questions. (Refs. 
1, 2) In that case the periodicity in the spectrum is given by the many harmonics of the fundamental 
voice frequency, but another form of periodicity which can also be detected by cepstrum analysis is 
the presence of sidebands spaced at equal intervals around one or a number of carrier frequencies. 

The presence of such sidebands is of interest in the analysis of gearbox vibration signals, since a number 
of faults tend to cause modulation of the vibration pattern resulting from tooth meshing, and this 
modulation (either amplitude or frequency modulation) gives rise to sidebands in the frequency 
spectrum. The sidebands are grouped around the tooth-meshing frequency and its harmonics, spaced 
at multiples of the modulating frequencies (Refs. 3, 4, 5), and determination of these modulation 
frequencies can be very useful in diagnosis of the fault. 

The cepstrum is defined (Refs. 6, 1) as the power spectrum of the logarithmic power spectrum (i.e. 
in dB amplitude form), and is thus related to the autocorrelation function, which can be obtained by 
inverse Fourier transformation of the power spectrum with linear ordinates. The advantages of 
using the cepstrum instead of the autocorrelation function in certain circumstances can be inter­
preted in two different ways. As regards sidebands, it means that by virtue of the logarithmic 
conversion more weight is given to low level components, and this is advantageous where it is 
primarily the existence of periodicity which is to be confirmed, and its frequency spacing accurately 
determined (see Fig. 1). In other applications such as speech analysis, the advantage is perhaps 
more that multiplicative relationships in the spectrum (e.g. by transfer functions) become additive 
on taking logarithms, and this additive relationship is maintained by the further Fourier transformation, 
thus eliminating the convolution (or "smearing") which would otherwise result (Ref. 1). 

T 

After a discussion of some basic concepts and definitions, the present article discusses the various ways 
in which the cepstrum can be obtained, and finally gives some results of the application to gearbox 
fault diagnosis. Much of the information is of course generally applicable, e.g. to other applications 
of cepstrum analysis and to other cases where it is desired to detect sideband growth. 



Fig. 1 Detection of periodicity in a spectrum 



DEFINITIONS 

The term "cepstrum" appears to have been first coined (from "spectrum") by Tukey et al. (Ref. 6) 
along with similarly derived terms such as "quefrency", "saphe", and "rahmonics" (from frequency, 
phase, harmonics). 

The following definitions are used in the present discussion. 

Cepstrum 

This is normally defined as the power spectrum of the logarithm of the power spectrum. Since 
absolute calibration is of secondary importance (provided consistency is maintained) and since the 
logarithmic power spectrum would normally be expressed in dB, the unit of amplitude of the 
cepstrum is herein taken to be (dB)2. On occasion, however, the term cepstrum may also be applied 
to the amplitude spectrum (square root of the power spectrum) and this will be distinguished by 
having the units dB. 

Quefrency 

This is the independent variable of the cepstrum and has the dimensions of time as in the case of the 
autocorrelation. The quefrency in seconds is the reciprocal of the frequency spacing in Hz in the 
original frequency spectrum, of a particular periodically repeating component. (Fig. 2) Just as the 
frequency in a normal spectrum says nothing about absolute time, but only about repeated time 
intervals (the periodic time), the quefrency only gives information about frequency spacings and not 
about absolute frequency. 



Fig. 2 Time signal, log spectrum and cepstrum for a periodic signal 



METHODS OF OBTAINING THE CEPSTRUM 

Since the originator of the technique, Tukey, was also one of the originators of the Fast Fourier 
Transform (FFT) algorithm, it is natural that up until now digital techniques have been used almost 
exclusively for cepstrum determination. This also represents a very efficient and rapid method since 
the same algorithm is used for obtaining both the original spectrum and the cepstrum, and operation 
in Real Time is feasible. Several other possibilities are described here, however, ranging from 
completely analogue set-ups to arrangements where the spectrum analysis is carried out by analogue 
methods, though with spectrum output in digital form for digital computation of the cepstrum. 
These methods will often be less expensive in instrument cost than digital analysis, and many people 
already possess the necessary instruments. 
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Calibration techniques are slightly different for each method and are discussed as appropriate. 

Method 1 

A typical set-up is shown in Fig. 3. The spectrum is taken from the "log DC" output of the 2010 
Analyzer and recorded on a 7502 Digital Event Recorder. The longest recording time available 
(using the internal clock of the 7502) is 100s, but in many cases it will be possible to carry out the 
complete spectrum analysis in this time. This applies for example to the high-speed gearboxes 
discussed later where the tooth-meshing frequency is as high as 3—10 kHz. (See Ref. 7 for selection 
of optimum analysis speed.) If analysis time is longer it will be necessary to use an external clock. 
Where the original signal is recorded on an endless loop (tape loop, or another 7502) then a once-per-
revolution pulse can often be used as this external clock. The Analyzer type 2010 can be driven 
either mechanically or electrically by the level recorder (which is required for later recording of the 
cepstrum) or electrically from an external ramp generator. 

Fig. 3 Instrument set-ups for Cepstrum Analysis (Method 1) 



On playback of the logarithmic spectrum, the actual cepstrum analysis is performed like a normal 
frequency analysis, with the exception that a linear potentiometer is used in the Level Recorder. 
Because of the wide frequency range of the 2010, the 7502 could virtually always be played back at 
the highest speed of 500 kS/s (unless an intermediate resolution bandwidth is desired). The 20 dB 
linear potentiometer (Type ZR 0002) is recommended as giving the best range, and it may be 
necessary to experiment a little to find the best attenuator settings since the low-"quefrency" 
components will generally not be of interest and can be allowed to exceed full-scale. Fig. 4 shows 
a typical cepstrum obtained in this way from the sound power spectrum of an electric drill (primarily 
gear noise). 
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Since the analyzer output voltage is proportional to the RMS rather than the mean square value, it 
is the amplitude spectrum which is recorded, with the units of dB from the original analysis. 
Amplitudes can be calibrated from the fact that the 50 dB dynamic range of the "log DC" output 
of the 2010 is equivalent to the voltage range 0—4.5 V. 
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For calibration of the quefrency scale, the following procedure can be used: 

If spectrum analysis sweep speed = Ss Hz/s 

and if the recording sampling rate of the 7502 = Rs samp!es/s 

then the frequency spacing of the samples =—s. Hz 
R s 

■ 

Fig. 4 (a) Gear arrangement and frequencies 
(b) Cepstrum obtained by Method 1 



This can then be related to the frequency range on playback as follows: 

1 R 
Sampling "quefrency" = f r e q u e n c y s p a c j n g - ^ seconds 

which is equivalent to the 7502 sample rate on playback Ps (e.g. 500 kHz) 

Thus, an arbitrary final analysis frequency fa represents the quefrency 

and this in turn is equivalent to the frequency spacing (e.g. sideband spacing or modulating frequency). 

Pc S, 
f . f (Hz) (2) 

Method 2 

This is an extension of Method 1 for the case where the original analysis time would otherwise be 
excessive, or where (as with speech analysis) it is necessary to select out a particular sample from a 
longer, perhaps non-stationary, record, A typical set-up for obtaining the logarithmic spectrum is 
shown in Fig, 5 and this is the only difference from Method 1. The first 7502 is used for recording 
a sample of the original time signal, and the second for recording the log spectrum. The analysis 
can thus be carried out at high speed, and possibly using the Gauss Impulse Multiplier Type 5623 
to select out a particular sample. (See Ref. 8 for details.) 

In cases where the Gauss impulse multiplier is used, the averaging time will be several times the 7502 
memory circulation time (Ref. 7) and it would be possible to use either the internal clock of the 
second 7502 (in which case the internal antialiasing filters can be used), or the "Sync. Trigger" 
pulse of the first as an external clock, giving one sample per record circulation. 

Where the signal is stationary and the first 7502 is used purely to speed up the analysis there is a 
further possibility, since the averaging time can be made equal to or less than the memory circulation 
time and the Sync. Trigger pulse of the first 7502 can be used as an external clock for the second. 

Fig. 5 Instrument set-up for Method 2 
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Since the sample is then taken before it can respond to passage of the signal discontinuity (which is 
coincident with the Sync, Trigger pulse) the effect of this can be greatly reduced to the point where 
the Gauss Impulse Multiplier may not give any advantage. The background for this is described fully 
in Ref, 9, where the identical question of spectrum sampling using the Digital Encoder Type 4421 
is discussed. 

Method 3 

It is of course possible to replace one or both Digital Event Recorders by Tape Recorders Type 7003 
(generally with tape loop adaptor mounted) but analysis time would be considerably longer since the 
maximum speedup ratio is 10. Equations (1) and (2) can still be used, with the ratio 
Ps 
■5- replaced by the speedup ratio between recording and playback of the log spectrum. (Normally 

10 for the 7003.) 

Method 4 

The Real Time Analyzer Type 3348 can be used directly as a Cepstrum analyzer provided that the 
optional X—Y Recorder Control Type ZH 0107 is mounted. 

The spectrum is first derived in the normal manner and stored in for example Store A. The spectrum, 
logarithmically converted, is then read out in analogue form from the X—Y Recorder output at the 
maximum rate (36 s) and fed into the analyzer input with frequency range set at 10 Hz (40 s record 
length). The read-out can be followed visually on the screen, and there is thus 4 s in which to "ho ld " 
the spectrum in the analyzer memory without loss of information. The cepstrum can then be read 
into Store B, while the spectrum is retained in Store A, meaning that either can be viewed or read 
out to a recorder at wi l l . 

Amplitude Calibration is determined by the fact that the 50 dB dynamic range at the Recorder Output 
represents the voltage range 0—5 V. (100 mV/dB.) 

Quefrency Calibration is as follows: 

Frequency range setting for original analysis = fR1 Hz 

This is equivalent to 77: or 90% of the total record length for the second analysis. The frequency 
1 0 9 

spacing of each line in the final analysis = —n—zzc - ~r~~ seconds quefrency and the full scale 
K y 7 record length fR1 ' 

quefrency is 400 times this or 
A 

—,— seconds (3) 

independent of the scale range used for the second analysis. (Having captured the logarithmic spectrum 
in the 10 Hz range, it can be an advantage to average its spectrum, using a higher frequency range for 
high speed, and thus averaging out the internal noise of the analyzer.) 

Fig. 6 shows a typical spectrum and cepstrum obtained in this way for the vowel sound "aaaa". 



Fig. 6 (a) Spectrum of vowel "a a a a" 
(b) Cepstrum of vowel "a a a a" 

Method 5 

If the spectrum is obtained in ASCII-coded BCD form on punched-paper tape, it can be used as input 
data to many computer systems, including timesharing systems, for which the normal operating 
languages are easily-learned high-level languages such as Fortran and Basic. Data in this form can be 
obtained from the set-up in Fig. 7 (Ref. 9) or from the 3348. 



Fig. 7 Set-up for high speed analysis with digital output 

Fig. 8 Cepstrum obtained by Method 5 for same spectrum as Fig. 4 

In cases where the analysis can in any case be carried out fairly rapidly (eg. high speed gearboxes) 
then it would be possible to eliminate the 7502 from the set-up in Fig. 7, and allow the digital 
encoder to be triggered by the "frequency shift" pulses from the 2010, since constant bandwidth 
and linear frequency scale are used. Frequency spacings would of course be limited to powers of 
10 Hz. 

It is then quite feasible to calculate the cepstrum using a Fast Fourier Transform (FFT) program 
written in the high-level language. 

Fig. 8 shows the result of such a calculation on the same signal as for Fig. 4, and it can be seen that 
they are very similar. Note that it is possible with the digital method to express the result either as 
amplitude spectrum (units dB) or power spectrum (units (dB)2) as desired; also that the vertical 



scale runs from zero whereas in Fig. 4 it starts at approx. 9% of full-scale (with the 10 - 110 mV 
potentiometer). The calculations were performed on a 16 K Varian computer with auxiliary disk 
unit (MOS System). The FFT program used (NLOGN) was obtained from Ref. 10 and is reproduced 
in Appendix A together with the subroutine HALF, based on the method given in Ref. 11, which 
uses NLOGN to perform the forward transform more efficiently when the input data are real. Both 
subroutines are written in Fortran IV. Appendix A also gives a guide to the use of the FFT algorithm. 

Presentation of the results is easiest when a digital plotting facility is available. Figure 8 was in fact 
obtained by a devious process involving conversion of the results from BCD form into 8-bit binary 
which could then be read into a digital Event Recorder Type 7502 for plotting on a Level Recorder, 
but this is not generally practicable. 

The question might well be asked "Why not do the original frequency analysis using the same 
procedure", but in fact it is hardly practicable. For one thing it is normally necessary to average over 
several analyses (at least 10) to obtain a reasonably reliable result, and moreover each of the spectrum 
analyses would have to be at least double the cepstrum analysis in length (Appendix A). Overall this 
would mean reading in more than 20 times as much data, which is not practicable with paper tape. 
The analysis time is also relatively long with the program written in a high-level language. (Typically 
1 min.) 

Amplitude Calibration is no problem in consideration of the fact that the BCD output of both the 
Digital Encoder Type 4421 and the Time Compression Analyzer Type 3348 is the same, viz. 0.1 dB 
per unit (e.g. 473 = 47.3 dB). 

Quefrency Calibration is as follows: 

Frequency spacing between samples = fs Hz 

.'. Sampling "quefrency" = T - S 
's 

The subroutine HALF gives an output array varying linearly in quefrency from zero (first value) up to 
the "Nyquist quefrency" (final value) and the Nyquist quefrency is one-half the sampling quefrency or 

2? (4) 

Method 6 

This is a fully digital method consisting of a 7504 computer in combination with a 7502 Digital Event 
Recorder as shown in Fig. 9. A special interface is required between these two instruments, but because 
of the rapid data transfer between them, it becomes quite efficient to also perform the original 
spectrum analysis by FFT methods. With the program written in DAS assembler language, the total 
calculation time is a matter of seconds. The minimum computer size which can be used is 8 K, and 
then any other programming would have to be in assembler language. Maximum transform size is 
4096 data points. Some details are given in Ref. 12. 

A possible alternative is to use Varian's standard FFT subroutine package (No. A-983) which 
although written in machine language is callable from a BASIC program. Minimum computer size 
is, however, 16 K, and the maximum transform size is 2048 data points. 



Fig. 9 Instrument set-up for FFT analysis 

Examples 

1. The first example is from a high speed gearbox mounted between a gas turbine and an alternator 
with shaft speeds of 85 Hz and 50 Hz respectively. Vibration recordings were made just prior to and 
shortly after a maintenance shutdown during which the gearbox internals were replaced. The reason 
for this was that during an inspection 6 months earlier, fretting corrosion had been discovered 
between the wheels and the shaft, but it had been possible to run in the intervening period while the 
new parts were being made. The first recording was made of acceleration, but an analysis of this 
showed that it was preferable to record velocity and so this was done on the second occasion. 

Fig. 10 shows 3% bandwidth analyses of the two signals compared as velocity and it is interesting that 
although a considerable change is evident at the shaft speeds, due to realignment, the change at the 
tooth meshing frequency and its harmonics is not marked in this representation. Fig. 11 shows 
constant bandwidth spectra of the same two signals on a linear frequency scale (this time as recorded, 
since the overall slope of the spectrum is of secondary importance). The difference now shows up 
clearly in the large number of sidebands around the tooth meshing component and its harmonics in 
the signal taken "before repair", whereas the three harmonics stand out clearly "after repair". Fig. 12 
shows cepstra corresponding to the spectra of Fig. 11 (using Method 5) and this confirms that the 
major modulating frequency is 85 Hz, and that it is much more marked "before repair". 

It is worth noting, however, that other cepstrum analyses under different conditions have not given 
the same clear result, and this is thought to be due to the difference in noise levels in the two 
original recordings, since one was recorded as acceleration and the other as velocity. At least until 
the influence of such factors is completely clarified, it would seem to be wise to only compare 
signals processed under identical conditions. 

2. The second example illustrates some of the measures which it is desirable to take. Both spectra 
and cepstra have been obtained by Method 6, from vibration signals recorded from a large slow speed 
gearbox driving a cement mil l . The signals taken "before repair" show the result of many years' 
operation. At this time it was found necessary to replace a bearing, and the machine was then 
started up in the reverse direction, which could be expected to give the same effect as a new 
gearbox. 



Fig. 10 High-speed Gearbox Vibration Spectra (3% bandwidth) 

Fig. 11 High-speed Gearbox Vibration Spectra (constant bandwidth) 

Fig. 12 Cepstra corresponding to Fig. 11 



Fig. 12 Cepstra corresponding to Fig. 11 

Fig. 11 High-speed Gearbox Vibration Spectra (constant bandwidth) 

Fig, 10 High-speed Gearbox Vibration Spectra (3% bandwidth} 



Figs. 13(a) and (b) show the spectra "before repair" and "after repair" respectively. They result 
from 4 K FFT transforms giving 2 K frequency points up to the Nyquist frequency and thus 1 K 
points up to the lowpass filter cutoff of the 7502. It has been arranged that the first three 
harmonics of the high speed tooth meshing frequency lie below this cutoff frequency. Furthermore, 
a highpass filter has been applied to the signal before recording on the 7502, with cutoff frequency 
at about a half of the tooth meshing frequency in order to eliminate the possible effect of low 
harmonics of the shaft speeds. The resulting valid frequency range which is illustrated thus includes 
frequencies from approx. 1 /2 to 31 n times the tooth meshing frequency being investigated, and 
eliminates extraneous effects as much as possible. 

Fig. 13 Low-speed Gearbox Vibration Spectra 
(a) Before Repair 
(bj After Repair 



Fig. 14 Cepstra corresponding to Fig. 13 
(a) Before Repair 
(b) After Repair 

There was an appreciable difference in the absolute levels in this case, but since this would only 
influence the DC component in the cepstrum, both spectra have been normalised to the peak 
component with a dynamic range of approximately 50 d3, and the spectra as illustrated have been 
used as input data to the second transform. 

Figs. 14 (a) and (b) show the two corresponding cepstra. (Note the difference in amplitude scaling). 
What appears to be the dominant spacing in the spectrum "after repair", viz. 92 Hz (Fig. 13 (b) ) 
which is in fact a major component in the cepstrum (Fig. 14 (b)) is thought to be a "ghost" 
component resulting from the gear cutting machine (Ref. 5), and could be representative of the 
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normal state of affairs. It is present at about the same level in the cepstrum "before repair" 
(Fig. 14 (a)) though not then at all obvious in the spectrum (Fig. 13 (a)). The other major 
component in the cepstrum "after repair" (Fig. 14 (b)) is at 24 Hz, the 3rd. harmonic of the 
input shaft speed. This frequency is also known to result from a 3-times-per-revolution variation 
in the pinion tooth cutting process (which was later altered). 



This third harmonic component is approximately 21/2 times larger in the cepstrum "before repair" 
(Fig. 14(a)) and is the dominant spacing evident in the spectrum (Fig. 13(a)), but the most 
remarkable increase is in the component corresponding to the pinion rotational speed itself (8,3 Hz) 
which has increased many times, and is as large as that at 25 Hz. 

Conclusion 

Only experience would tell at what point the modulation is serious, but the cepstrum technique 
appears to be a sensitive means for detecting changes in the spectrum not immediately obvious to the 
eye. 

The effects of many factors still have to be investigated, such as noise level in the spectrum, filter 
bandwidth and shape, and sideband spacing, before anything can be said about absolute levels in the 
cepstrum. 

However, it is thought that even at this stage, changes occurring in time in cepstra made under 
identical conditions should be significant, and at the very least can be used in conjunction wi th the 
spectrum to detect changes in the latter not immediately obvious to the eye. 

It is thought that the major benefit wil l be more advance warning of impending failure thus giving 
more time for planning maintenance shutdowns, but it should also be a valuable diagnostic technique 
for detecting and curing sources of modulation at the machine development stage. 
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APPENDIX A 

FAST FOURIER TRANSFORM (FFT) 

Virtually all Fourier analysis is based on the fourier integral pair 

F M = -J- f f(t) e-Jwt dt 

(1) 
f(t) = / F(co) eJw t dco 

- CO 

which defines the complex frequency component F(co) of the time function f(t) for each angular 
frequency to. 

It is possible to write discrete equivalents of these equations as follows: 

N - 1 ~ i k " 2TT 

F(k) = -^ I f(n) e N 
IN n = 0 

(2) 
N - 1 ikn 2TT 

and f(n) - I F(k) e N 

k = 0 

which are known as the Discrete Fourier Transform (DFT). This transform pair has very similar 
properties to (1) with the exception that it is discrete and periodic in both time and frequency 
domains. 

To calculate all N coefficients F(k) directly according to (2) requires N2 complex operations, but 
the FFT algorithm has been devised to obtain the same values in N log2 N operations, a considerable 
saving. 

One implementation of the algorithm, written in Fortran IV is the following program "NLOGIN" 
obtained from Ref. 10. 

SUBROUTINE NLOGNCMJX,SIGN) 
DIMENSION MC25) 
DIMENSION X ( 2 ) 
COMPLEX X , U P H O L D , Q 
LX=2**N 
DO 1 I= 1 >N 

1 M C I ) = 2 * * ( N - I ) 
DO 4 L= U N 
N B L 0 C K = 2 * * C L - 1 ) 
LBLOCK=LX/NBLOCK 
.LBHALF=LBL0CK/2 
K=0 
DO A I BL0CK= UNBLOCK 
FK=X 
FLX=LX 



V = S I G N * 6 . 2 8 3 1 8 5 3 * F K / F L X 
WK=CMPLX(COS< V ) , S I N ( V>> 
ISTART=LBLOCK*CIBLOCK-1) 
DO 2 I = 1.>LBHALF 
J = I S T A R T + I 
JH=J+LBHALF 
Q=X( JH)*WK 
X < J H ) = X < J ) - Q 
XC J ) = X C J ) + Q 

2 ■ CONTINUE 
DO 3 I = 2*N 
I 1 = 1 
IFCK.LT.MC I ) ) GO TO 4 

3 K = K - M ( I ) 
4 K=K+MC I I ) 

K=0 
DO 7 J = 1 * L X 
I F C K . L T . J ) GO TO 5 
HOLD=XCJ) 
XCJ)=XCK+1> 
XCK+l )=HOLD 

5 DO 6 1 = 1 * N 
I 1 = 1 
IFCK.LT.MC I ) ) GO TO 7 

6 K = K - M ( I ) 
7 K=K+MCII ) 

I F C S IGN. GT. 0 . 0 ) RETURN 
IX) 8 I = 1 * L X 

8 XC I )=XCI ) / F L X 
RETURN] 
END 

The basic algorithm assumes that N is a power of 2 and that the input data are complex. An N-point 
complex data sequence f(n) gives N complex frequency components ranging from zero frequency 
(1st value) to just less than the sampling frequency for the original data points. 

If the input data are real numbers, however, then half the storage space wil l be used for storing 
zeroes. Moreover, in that case the second half of the spectrum will be redundant since it is conjugate 
even about the Nyquist frequency (half the sampling frequency) and can thus be derived f rom the 
first half. 

These inefficiencies are removed by using the following subroutine " H A L F " based on an algorithm 
given in Ref. 11. 

SUBROUTINE HALFCiMS* X* SN ) 
DIMENSION XC 2 ) 
COMPLEX X i F I * A h A 2 * W 
FI=C 0 . 0 , 0 . 5 ) 
NC=2**NS 
N2 = NC/2 
W=CEXP( 2 . 0 * 3 . 1 4 1 5 9 * F I / F L 0 A T C N C ) > 
CALL N L O G N C N S J X , S N ) 
C 1 = 0 . 5 * C R E A L C X C 1 ) ) + A I M A G ( X C 1 ) ) ) 
CN=0.5*C REALCXC 1)>-AIMAGCXC I ) ) ) 



+ 

XC l ) = O i P L X ( C i , 0 . 0 ) 
X(NC+ 1 > = CMPLX< CN* 0 . 0) 
X ( N 2 + 1 ) = 0 . 5*C0NJG<XCN2+1)> 
DO 2 N=2*N2 
MINUSN=NC+2-N 
A1 = 0 . 5 * ( CONJGCXCMINUSN) )+XCN> ) 
A2= FI*(COMJG<X(MINUSN) ) - X ( N ) ) 
X ( N ) = A 1 
A 2 = A 2 * f c * * ( - N + l ) 
A 1 = 0 . 5 * ( X C N > + A 2 ) 
A 2 = 0 . 5 * C X C N ) - A 2 ) 
X ( N ) = A 1 

2 XCMINUSiM)=C0NJG(A2) 
RETURN 
END 

This algorithm takes a sequence of N real data points and transforms them as N/2 complex points 
(using NLOGN), then manipulates the result to obtain the first half of the spectrum of the original 
data sequence. The output array contains N/2 + 1 values ranging from zero frequency (1st value) 
to the Nyquist frequency (last value). The zero frequency and Nyquist frequency components are 
necessarily real numbers (imaginary part zero), but the components in between are complex 
numbers of the form "a + j b " containing information of both amplitude and phase. The amplitude 
spectrum can then be determined as the length of each vector ^ /a 2 + b2 and the power spectrum 
as the square of this or (a2 + b2) . 

The input data required for HALF, (NS, X and SN) have the following requirements: 

NS — this indicates the size of the transform performed by NLOGN and is equal to Log2 (N/2) 
where N is the number of real data values in the input sequence. 

eg. for a 1024 point transform, N = 1024 and NS =* 9. 

X — This is the input array of N/2 complex points and must be equivalenced in an 
"EQUIVALENCE" statement in the main program to the input array of N real data 
points. The result of the transform is also stored in X, and since this includes N/2 + 1 
complex values the true dimension of X must be allowed for in the main program (the 
stated dimension of X in the subroutine is purely formal). 

SN — This parameter must always be —1.0 and indicates in NLOGN that the transform is a 
forward transform. 

Possible pitfalls in using the FFT algorithm are described in Ref. 13. 


